LIMITS ON UNIVERSALITY IN ULTRACOLD THREE-BOSONS RECOMBINATION

José P. D'Incao, Hiroya Suno and Brett D. Esry

Department of Physics, Kansas State University, Manhattan, Kansas 66506 <u>ULTRACOLD ATOMIC GASES</u> : FESHBACH RESONANCE - SCATTERING LENGTH *a* : ATOMIC INTERACTIONS (NONLINEAR EXCITATIONS, ATOMIC SOLITIONS, COLLAPSE/EXPLOSION, BEC/BCS)

<u>MAIN RESULTS</u> : (BOSONS)

- THREE-BODY RECOMBINATION : $X + X + X \rightarrow X_2 + X + E_{vl}$
- $|a| < 2 \, 10^5$ a.u., $R \approx 10^7$ a.u., $0.1 \ n\text{K} < E < 1 \ m\text{K}$
- Universal Behavior for 3-body ultracold collisions

OUTLINE

- Hyperspherical Adiabatic Approach
 - Potential Model
 - a > 0 : Interference Mechanism
 - a < 0 : Resonance Mechanism
- Universal behavior
 - FINITE ENERGY CALCULATIONS
 - RESTRICTIONS ON THE UNIVERSAL BEHAVIOR

Hyperspherical Adiabatic Approach

$$\frac{\text{MASS-SCALED JACOBI COORDINATES}}{\vec{\rho_1} = (\vec{r_1} - \vec{r_2})/d}$$
$$\vec{\rho_2} = d\left[\vec{r_3} - (m_1\vec{r_1} + m_2\vec{r_2})/(m_1 + m_2)\right]$$

Schrödinger Equation

$$- \frac{1}{2\mu} \left(\frac{d^2}{d^2 R} + U_{\nu}(R) \right) F_{\nu}(R) - \sum_{\nu'} \left(2P_{\nu\nu'}(R) \frac{d}{dR} + Q_{\nu\nu'}(R) \right) F_{\nu'}(R) = EF_{\nu}(R)$$

 $U_{\nu}(R) \Rightarrow \text{Particles Interactions}$ $Q_{\nu\nu'}(R), P_{\nu\nu'}(R) \Rightarrow \text{Inelastic transitions}$

THREE-BODY RECOMBINATION RATE

$$\left| K_3 = \frac{\hbar k}{\mu} \sigma = \sum_{J,\pi} \sum_{i,f} \frac{192(2J+1)\pi^2}{\mu k^4} |S_{f \leftarrow i}^{J\pi}|^2, \quad k = \sqrt{2\mu E} \right|$$

POTENTIAL MODEL

- a > 0 : Repulsive interactions

- a < 0 : Attractive interactions

$$V_{int}(R,\Omega) = v(r_{12}) + v(r_{13}) + v(r_{23})$$

THREE-BOSONS SYSTEM WITH a > 0(BROAD COUPLING AT $R \sim 3a$)

GENERAL FEATURE (a > 0)

<u>THREE-BOSONS SYSTEM WITH a < 0</u> (LOCALIZED COUPLING AT $R \approx 50$ a.u.) (POTENTIAL BARRIER AT $R \sim 2|a| U_b = 0.079/\mu a^2$)

Recombination Rate for a < 0 (Resonance)

GENERAL FEATURE (a < 0)

UNIVERSAL BEHAVIOR

- Previous works : $a \gg r_0 / kr_0 \ll 1$.
- Analytical Formula for a > 0: $(\alpha = 1.0064), O(r_0/a)$

$$K_3 = 360 \ (a^4/m) \sin^2 \left[\alpha \ln(3a/2r_0) + \Phi \right]$$

- Analytical Formula for a < 0: $O(r_0/a)$

$$K_3 = \frac{4590 \left(a^4/m\right) \sinh(2\eta_*)}{\sin^2[\alpha \ln(3|a|/2r_0) + \Phi + 1.63] + \sinh^2 \eta_*}$$

- MINIMA AND PEAKS EQUALLY SPACED $(e^{\pi/\alpha} \approx 22.7)$
- EFIMOV EFFECT.

THRESHOLD REGIME :

- $k|a| \lesssim 1$, or E is the smallest energy in the system. - a > 0 : $E_b = \hbar^2/ma^2$
- a < 0: Potential Barrier $(0.079\hbar^2/\mu a^2)$

THERMAL AVERAGE

$$\langle K_3 \rangle(T) = \frac{1}{2(k_B T)^3} \int K_3(E) E^2 e^{-E/k_B T} dE$$

HIGHT PARTIAL WAVES

CONCLUSIONS

- Universal Behavior

- ⁴He : 100 nK \Rightarrow -7700 a.u. < a < 20800 a.u. $\Rightarrow n \approx 2$
- ²³Na : 100 nK \Rightarrow -3200 a.u. < a < 8650 a.u. \Rightarrow n \approx 2
- ⁸⁷Rb : 100 nK \Rightarrow -1650 a.u. < a < 4450 a.u. $\Rightarrow n \approx 2$
- EFIMOV EFFECT, n = 3: ⁴He \Rightarrow 3 nK / ²³Na \Rightarrow 0.5 nK / ⁸⁷Rb \Rightarrow 0.1 nK
- <u>n = 4</u> : ⁴He \Rightarrow 6. 10⁻³ nK / ²³Na \Rightarrow 1. 10⁻³ nK / ⁸⁷Rb \Rightarrow 3. 10⁻⁴ nK

FUTURE :

- More Diatomic channels : Universal Behaviour

- Relaxation Process : $X + X_2^* \rightarrow X + X_2$

- Fermions : Molecular BEC / Cooper Pairs !