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Abstract 
We study the dynamics of diatomic molecules (dimers) in intense IR and XUV laser 

fields theoretically and compare the results with measured data in collaboration with different 

experimental groups worldwide. The first three chapters of the thesis cover the introduction and 

the background on solving time-independent and time-dependent Schrödinger equation. The 

numerical results in this thesis are presented in four chapters, three of which are focused on 

diatomic molecules in IR fields. The last one concentrates on diatomic molecules in XUV pulses.  

The study of nuclear dynamics of H2 or D2 molecules in IR pulses is given in Chapter 4. 

First, we investigate the optimal laser parameters for observing field-induced bond softening and 

bond hardening in D2
+. Next, the nuclear dynamics of H2

+ molecular ions in intense laser fields 

are investigated by analyzing their fragment kinetic-energy release (KER) spectra as a function 

of the pump-probe delay τ. Lastly, the electron localization is studied for long circularly 

polarized laser pulses. 

Chapter 5 covers the dissociation dynamics of O2
+ in an IR laser field. The fragment KER 

spectra are analyzed as a function of the pump-probe delay τ. Within the Born-Oppenheimer 

approximation, we calculate ab-initio adiabatic potential-energy curves and their electric dipole 

couplings, using the quantum chemistry code GAMESS.  

In Chapter 6, the dissociation dynamics of the noble gas dimer ions He2
+, Ne2

+, Ar2
+, 

Kr2
+, and Xe2

+ is investigated in ultrashort pump and probe laser pulses of different wavelengths. 

We observe a striking ‘‘delay gap’’ in the pump-probe-delay-dependent KER spectrum only if 

the probe-pulse wavelength exceeds the pump-pulse wavelength. Comparing pump-probe-pulse-

delay dependent KER spectra for different noble gas dimer cations, we quantitatively discuss 

quantum-mechanical versus classical aspects of the nuclear vibrational motion as a function of 

the nuclear mass.  

Chapter 7 focuses on diatomic molecules in XUV laser pulses. We trace the femtosecond 

nuclear-wave-packet dynamics in ionic states of oxygen and nitrogen diatomic molecules by 

comparing measured kinetic-energy-release spectra with classical and quantum-mechanical 

simulations. Experiments were done at the free-electron laser in Hamburg (FLASH) using 38-eV 

XUV-pump–XUV-probe.  

The summary and outlook of the work is discussed in Chapter 8. 
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approximation, we calculate ab-initio adiabatic potential-energy curves and their electric dipole 
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In Chapter 6, the dissociation dynamics of the noble gas dimer ions He2
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+, 
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+ is investigated in ultrashort pump and probe laser pulses of different wavelengths. 

We observe a striking ‘‘delay gap’’ in the pump-probe-delay-dependent KER spectrum only if 

the probe-pulse wavelength exceeds the pump-pulse wavelength. Comparing pump-probe-pulse-

delay dependent KER spectra for different noble gas dimer cations, we quantitatively discuss 

quantum-mechanical versus classical aspects of the nuclear vibrational motion as a function of 

the nuclear mass.  

Chapter 7 focuses on diatomic molecules in XUV laser pulses. We trace the femtosecond 

nuclear-wave-packet dynamics in ionic states of oxygen and nitrogen diatomic molecules by 

comparing measured kinetic-energy-release spectra with classical and quantum-mechanical 

simulations. Experiments were done at the free-electron laser in Hamburg (FLASH) using 38-eV 
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“The eternal mystery of the world is its comprehensibility”. 

Albert Einstein 1936.
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Chapter 1 - INTRODUCTION 
The investigation of the interaction of atoms and molecules with intense laser fields is 

one of the most interesting areas of the current research in atomic and molecular physics. The 

general motivation for studying molecules in laser fields lies in the possibility of gaining 

fundamental understanding of the dynamics and the intermediate processes involved in various 

physical, chemical and biological reactions.  

The time scales of the atomic and molecular motion are orders of magnitude less than 

those in our life. The typical scales of length are less than a nanometer for small molecules, and 

the scales of time vary from attoseconds for the electronic dynamics, to femtoseconds for 

molecular vibration, to picoseconds for molecular rotation. To trace all the processes that take 

place during these interactions short laser pulses are used. To access the sub-femtosecond time 

scale, pump-probe techniques are being further developed to track electrons on their natural 

attosecond time scale [Alnaser-05, Bocharova-11, Calvert-10, Corkum-07, De-11, Ergler-06-2, 

Geißler-12, Johnsson-07, Légaré-05, Magrakvelidze-12-1, Magrakvelidze-12-2, Ullrich-12, Wu-

13-2].  

The control, time-resolved observation, and analysis of the nuclear dynamics in small 

diatomic molecules such as H2
+ and D2

+ [Kremer-09, Ray-09, Sansone-10, Singh-10, Ergler-06-

2, Feuerstein-07, Bocharova-08, Winter-09] and, more recently, in heavier diatomic molecules 

with several binding electrons [De-10, De-11, Bocharova-11, Geißler-12] have been made 

possible by significant advances in femtosecond laser technology [Brixner-05, Dantus-04, 

Feuerstein-07, Hertel-06, Kling-06, Posthumus-04, Zewail-00]. “Pump-probe” experiments, 

which use short and intense time-delayed laser pulses, are performed in many laboratories 

[Alnaser-05, Baker-06, Corkum-07, Ergler-06-2, Johnsson-07, Légaré-05, Miller-88, Niikura -

03, Sansone-06]. In these experiments a short pump pulse (with pulse lengths of only a few fs 

corresponding to bandwidths that are larger than the vibrational level spacing) electronically 

excites or ionizes the neutral target molecule and also coherently excites a superposition of 

stationary vibrational states of the molecular ion, resulting in a moving nuclear wave packet. 

With the help of a second delayed probe pulse the probability density of the wave packet can be 

imaged. The probe pulse rapidly ionizes the molecular ion leading to its fragmentation by 

Coulomb explosion (CE) [Chelkowski-02, Chelkowski-07, Feuerstein-03]. The fragments of the 

reaction are detected and kinetic-energy release (KER) spectra are measured [Alnaser-05, Ergler-
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06-2, Martín-07, Niederhausen-07, Rudenko-06]. From the KER spectra, the dynamics of the 

nuclear wave packet can be reconstructed. The pump-probe technique is by now routinely 

applied in many fields of physics, chemistry and biochemistry [Zewail-88, Crespo-Hernández-

05, Ergler-06-2]. 

The current work focuses on the dissociation dynamics of the diatomic molecules in 

infra-red (IR) or extreme ultraviolet (XUV) fields. We mainly calculate evolution of the wave 

packet in time for the dissociation process of the diatomic molecules in laser fields. Some 

background on molecular orbital theory and the theoretical tools used in the calculations are 

covered in Chapters 2 and 3. In particular, Chapter 2 reviews approximation methods for solving 

the time-independent Schrödinger equation and also some details on computing potential curves 

and dipole coupling elements using the quantum chemistry code GAMESS. Those calculations 

from GAMESS are used in the calculations of the KER spectra. Chapter 3 describes methods for 

solving the time-dependent Schrödinger equation (TDSE) based on discretizing operators and a 

finite-differencing scheme for the time propagation. 

In the first chapter of the main part of this work (Chapter 4), the simplest molecule H2
+ 

(D2
+) in an IR field is discussed. At the beginning of the chapter, time-resolved studies of 

vibrational motion for the small molecules (H2 and D2) in laser fields are covered. The 

vibrational dynamics of wave packet motion of H2 and D2 molecules have been studied by 

analyzing the KER of the molecular ion fragments produced by a pump and second delayed 

probe laser pulse [Posthumus-04, Bocharova-11, Ergler-06-1, Alnaser-05, De-10, De-11]. The 

last part of Chapter 4 discusses the localization of electrons for symmetric laser pulses, which is 

in contrast to the general belief that electron localization cannot be measured in symmetric laser 

pulses. There are several techniques for studying electron localization in diatomic molecules that 

includes CEP locked [Kling-06, Kremer-09, Znakovskaya-12] or two color asymmetric pump-

probe pulses [Ray-09, Wu-13-1, He-08-1, He-08-2, Sansone-10, Singh-10]. “Electron 

localization” with a single symmetric circularly polarized pulse is discussed in Section 4.4. 

Interaction of laser fields with heavier molecules such as O2 and noble gas dimers are 

described in Chapters 5 and 6 respectively. Compared to the H2
+ molecule the dissociative 

dynamics for the heavier molecules is more complicated due to more adiabatic states involved. 

In chapter 5 we present a method that we developed for identifying the relevant electronic states 

involved in the dissociation dynamics with one color IR pump and probe pulses using the O2 



4 

 

molecule as an example. Chapter 6 focuses on dissociation dynamics of noble gases with 

different pump and probe field wavelengths by analyzing the KER spectra as a function of the 

pump-probe delay. Using the pump and probe pulses with different wavelengths allows us to 

observe additional features of the KER spectra such as  striking  “delay gap”. 

The interaction of a XUV pulse with O2 and N2 molecules is described in Chapter 7, 

where in the calculations, we try to identify the electronic states of the molecular ions that are 

populated by ionizing the neutral molecule. We model the femtosecond nuclear wave packet 

dynamics in the ionic states of oxygen and nitrogen molecules for one of the first experimentally 

measured KER spectra for the XUV-pump and XUV-probe pulses. In contrast to intense NIR 

pulses, the interaction of XUV pulses with atomic and molecular targets is characterized by large 

Keldysh parameters, corresponding to ionization by the absorption of no more than a few 

energetic photons. In addition, with regard to identifying reaction pathways, the absorption of a 

known small number of energetic photons tends to induce electronic transitions to a more 

narrowly defined part of the target electronic spectrum. In addition, since these XUV and X-ray 

sources are tunable, transitions into specific spectral regions can be selected. In dissociative 

reactions, the KER can thus be resolved with regard to the number of absorbed photons and the 

pump-pulse-generated intermediate charge states of the molecular ion.  Finally, conclusions and 

final remarks are presented in Chapter 8. We use atomic units (a.u.) throughout this work unless 

indicated otherwise (Appendix F). 
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Chapter 2 - INTRODUCTION TO MOLECULAR ORBITAL THEORY 
In this chapter approximation methods for solving the time-independent Schrödinger equation 

are summarized. 

For simple systems such as the harmonic oscillator, a particle in a box, or the hydrogen 

atom, the time-independent Schrödinger equation can be solved exactly. For more complex 

systems (for example molecules), however approximations need to be made to solve it 

numerically. 

There are several steps involved in solving the time-independent Schrödinger equation 

for molecules: first, the Born-Oppenheimer (BO) approximation, leading to the idea of a 

potential energy surface. Next, the expansion of the many-electron wavefunction in terms of the 

so-called Slater determinants; and finally, representation of the Slater determinants in terms of 

molecular orbitals (MO), which are linear combinations of atomic-like-orbital functions - the 

basis set. 

To describe molecules in an intense laser field accurately, one needs to consider both the 

electronic and also the nuclear degrees of freedom. The typical Hamiltonian for the molecule is 

written as the sum of the nuclear (TN) and electronic (Te) kinetic and potential (VNN nuclear-

nuclear, VeN nuclear-electron and Vee electron-electron interactions) energies: 

𝐻 = 𝑇𝑁 + 𝑇𝑒 + 𝑉𝑁𝑁 + 𝑉𝑒𝑁 + 𝑉𝑒𝑒 

= −1
2
∑ 1

𝑚𝑙
∇𝑘2𝑘 − 1

2
∑ ∇𝑖2𝑖 + ∑ ∑ 𝑍𝑘𝑍𝑙𝑒2

𝑟𝑘𝑙𝑘>𝑙𝑘 − ∑ ∑ 𝑍𝑘𝑒2

𝑟𝑖𝑘𝑖𝑘 + ∑ ∑ 𝑒2

𝑟𝑖𝑗𝑖>𝑗𝑗          (2. 1) 

where labels k and l correspond to the nuclei and i and j to the electrons, ml is nuclear mass, Zke 

and Zle nuclear charges, rkl are internuclear distances, rij are distances between two electrons, and  

rik are the distances from nuclei to electrons .  

 2.1 Born-Oppenheimer approximation 
“The underlying physical laws necessary for the mathematical theory of a large part of 

physics and the whole of chemistry are thus completely known, and the difficulty is only that the 

exact application of these laws leads to equations much too complex to be soluble”.  

P.A. Dirac 1929. 

The wave-function of the many-electron molecular system is a function of electron and 

nuclear coordinates: ψ(R,r), where R represents the nuclear coordinates, and r the electron 
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coordinates), and the  motions of the nuclei and electrons are coupled. The BO approximation is 

based on the fact that the nuclei are almost 2000 times heavier than electrons and move much 

more slowly, so that to the electrons they appear “fixed”. In the BO approximation, to a high 

degree of accuracy, we can separate electron and nuclear motion  

𝜓(𝑅, 𝑟) = 𝜓𝑒𝑙(𝑟;𝑅)𝜓𝑁(𝑅)                        (2.2) 

where the electronic wavefunction depends on the nuclear coordinates only parametrically. We 

start with the Schrödinger equation  

                                    𝐻𝜓(𝑅, 𝑟) = 𝐸𝜓(𝑅, 𝑟)  .                          (2.3) 

In the BO approximation [Cramer-04], the TN term is taken as independent of electrons in the 

Hamiltonian and the VeN term becomes constant for a fixed R. Note that even with the separated 

wavefunction equation (2.3) cannot be solved exactly (except for simplest molecule H2
+) and 

further approximations has to be made. 

 

A. Electronic Schrödinger equation 
Under the BO approximation we can solve the electronic part of the Schrödinger equation 

separately: 

 𝐻𝑒𝑙𝜓𝑒𝑙(𝑟;𝑅) = 𝐸𝑒𝑙𝜓𝑒𝑙(𝑟;𝑅)                                (2.3a) 

with the electronic Hamiltonian 

𝐻𝑒𝑙(𝑅) = 𝑇𝑒 + 𝑉𝑒𝑁 + 𝑉𝑒𝑒 = −1
2
∑ ∇𝑖2𝑖 − ∑ ∑ 𝑍𝛼𝑒2

𝑟𝑖𝛼𝑖𝛼 + ∑ ∑ 𝑒2

𝑟𝑖𝑗𝑖>𝑗𝑗            (2.3b) 

that depends on R only parametrically. The electronic energy Eel is not a constant but depends on 

the nuclear geometry (internuclear distance for diatomic molecules). The solution of the 

electronic part of the Schrödinger equation (2.3) for different geometry (internuclear distance) 

leads to the potential energy surfaces  

𝑉(𝑅) = 𝐸𝑒𝑙 + 𝑉𝑁𝑁                                                   (2.3c) 

where VNN is given in equation (2.1). 

 

B.  Nuclear Schrödinger equation 
Once we have the potential energy surface, we can solve the nuclear Schrödinger 

equation that describes the nuclei in the average field generated by the fast moving electrons: 

𝐻𝑁𝜓𝑁(𝑅) = 𝐸𝑁𝜓𝑁(𝑅)                           (2.3b) 
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where  HN = TR + V(R) + VeN is the total energy of the molecule in BO. Note that each electronic 

state corresponds to a different potential energy surface. 

 2.2. Hartree-Fock method and SCF procedure 
While in BO approximation the Hamiltonian is separated in electronic and nuclear parts, 

it is still not possible to solve the electronic part (equation (2.3a)) exactly for complicated 

molecules. Thus, it is necessary to make more approximations. One of the popular approaches is 

the Hartree–Fock self consistent field method (HF-SCF) [Hartree-28, Atkins-05]. This method 

gives an approximate solution of the electronic Schrödinger equation (2.3a) using the 

Hamiltonian Hel as obtained from the Born–Oppenheimer approximation.  

Till now we have assumed that we could solve the electronic Schrödinger equation. But 

the last term Vee in the Hamiltonian (2.1), which depends on electron-electron separation, is 

problematic in the calculations. As a first step we are going to ignore this term and solve the 

Schrödinger equation for n electrons 

𝐻0𝜓0 = 𝐸0𝜓0        ;             𝐻0 = ∑ ℎ𝑖𝑛
𝑖=1             (2.4) 

where 

ℎ𝑖 = −1
2
∇𝑖2 − ∑ 𝑍𝑘

𝑟𝑖𝑘𝑘                                                          (2.4a) 

is the so-called core Hamiltonian for electron i in the field of a nucleus of charge Zk [Szabo-82, 

Atkins-05]. The n electron equation (2.4) can be separated into n one-electron equations with 𝜓0 

as a product (Hartree product) of the one-electron  𝜓𝛼0(𝑖) wavefunctions (orbitals): 

ℎ𝑖𝜓𝛼0(𝑖) = 𝐸𝛼0𝜓𝛼0(𝑖);        𝜓0 = 𝜓𝛼0𝜓𝛽
0 …𝜓𝜔0     (2.5) 

with Eα
0 the energy of an electron in the α-th orbital. Note that simplified notation 𝜓𝛼0(𝑖) is 

introduced for the orbital 𝜓𝛼0(𝑟𝑖) occupied by electron i with coordinate ri. Applying the Pauli 

principle, the product wavefunction 𝜓0 is symmetrized or antisymmetrized, depending on the 

symmetry of the total spin wavefunction leading to the Slater determinants in place of 𝜓0. 

Introducing spin-orbitals as a product of the spin wavefunctions and the orbital wavefunctions, 

the wavefunctions 𝜓0 can be written in terms of the Slater determinant as:   

𝜓0(𝑟,𝑅) = (𝑛!)−0.5 �

𝜙1(1) 𝜙2(1)
𝜙1(2) 𝜙2(2) ⋯

𝜙𝑛(1)
𝜙𝑛(2)

⋮ ⋱ ⋮
𝜙1(𝑛) 𝜙2(𝑛) ⋯ 𝜙𝑛(𝑛)

�   (2.6) 
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where 𝜙𝛼(𝑖) are orthonormal spin-orbitals of electron i with the indices corresponding to the spin 

states as well as spatial states. The single particle 𝜙𝛼(𝑖) wavefunctions are determined by 

minimizing the Rayleigh ratio: 

𝐸 =
〈𝜓𝑒𝑙(𝑟;𝑅)|𝐻𝑒𝑙|𝜓𝑒𝑙(𝑟;𝑅)〉
〈𝜓𝑒𝑙(𝑟;𝑅)|𝜓𝑒𝑙(𝑟;𝑅)〉 . 

                                                   (2.6a) 

 Execution of this procedure leads to the equations for each spin-orbitals 𝜙𝛼(𝑖). 

Up to this point, the electron-electron repulsion has been neglected. In the Hartree-Fock 

method the electron-electron repulsion is included in an averaged way, meaning that each 

electron is moving in the average field of the other electrons and the nuclei. The HF equation for 

a spin-orbital 𝜙𝛼(1) occupied by electron 1 is 

𝑓1𝜙𝛼(1) = 𝜀𝛼𝜙𝛼(1)                  (2.7) 

with spin-orbital energy 𝜀𝛼 and HF operator 𝑓1 instead of the Hamiltonian: 

𝑓1 = ℎ1 + ∑ {𝐽𝜇(1) − 𝐾𝜇(1)}𝜇            (2.8) 

where the sum is over all spin-orbitals 𝛼,𝛽, … ,𝜔, h1 is core Hamiltonian of electron 1, and the 

Coulomb operator 𝐽𝜇(1) and exchange operator 𝐾𝜇(1) are defined as  

𝐽𝜇(1)𝜙𝛼(1) = ∫𝜙𝜇∗ (2) 1
𝑟12
𝜙𝜇(2)𝑑𝑟2𝜙𝛼(1)             (2.9) 

𝐾𝜇(1)𝜙𝛼(1) = ∫𝜙𝜇∗ (2) 1
𝑟12
𝜙𝛼(2)𝑑𝑟2𝜙𝜇(1)       (2.10) 

Note that if the Hartree-Fock equation is written for spatial orbitals a factor of 2 emerges in front 

of the Coulomb operator; each spatial orbital is doubly occupied [Atkins-05]. The Coulomb 

operator reflects the electron-electron Coulombic repulsion, and the exchange operator takes into 

account the electron exchange energy including spin correlation effects.  

For each spin-orbital the HF equation (2.7) need to be solved, but for that one needs to 

know the Coulomb and exchange operators that depend on spin-orbitals of n-1 other electrons. 

Thus the solution of (2.7) needs to be known up front.  This dilemma is solved with self-

consistent field (SCF) method [Cramer-04]. The SCF procedure is as follows:  

1. Construct trial spin-orbitals. 

2. Construct HF operator. 

3. Solve the Hartree-Fock equations; obtain a new set of spin-orbitals. 

4. Construct the new HF operator with the new spin orbitals and again solve the HF equations. 
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5. Check convergence (usually the energies of HF wavefunctions are compared and if the 

difference is less than, say, 10-6 a.u. the result is considered to be converged). 

Roothaan suggested using an expansion of the spin-orbitals (more correctly spatial part of 

the orbitals) in terms of known basis set functions (for example Gaussian basis sets (see Section 

2.3 for the basis sets)), which leads to the HF-SCF method for molecules [Roothaan-51].  

The HF equation for spatial orbital 𝜓𝛼 (1) with electron 1 can be written as 

𝑓1𝜓𝛼(1) = 𝜀𝛼𝜓𝛼(1)      (2.11) 

with HF operator for spatial orbitals 𝑓1 = ℎ1 + ∑ {2𝐽𝜇(1) − 𝐾𝜇(1)}𝜇  [Atkins-05]; where the 

𝐽𝜇and 𝐾𝜇 operators are defined for spatial orbitals. Each spatial orbital can be expanded in terms 

of n basis Roothaan basis functions 𝜑𝑗 

                            𝜓𝑖 = ∑ 𝑎𝑖𝑗𝜑𝑗𝑛
𝑗=1                   (2.12) 

with unknown 𝑎𝑖𝑗 coefficients. For molecules the orbitals are called molecular orbitals (MOs). 

Substituting (2.12) in (2.11), multiplying both sides of the equation by 𝜑𝑖∗(1), and 

integrating over the electronic coordinates r1 leads to 

∑ 𝑎𝛼𝑗𝑛
𝑗=1 ∫𝜑𝑖∗(1)𝑓1𝜑𝑗(1)𝑑𝑟1 = 𝜀𝛼 ∑ 𝑎𝛼𝑗𝑛

𝑗=1 ∫𝜑𝑖∗(1)𝜑𝑗(1)𝑑𝑟1   (2.13) 

Introducing the overlap matrix S and Fock matrix F  

𝑆𝑖𝑗 = ∫𝜑𝑖∗(1)𝜑𝑗(1)𝑑𝑟1                        (2.14) 

𝐹𝑖𝑗 = ∫𝜑𝑖∗(1)𝑓1𝜑𝑗(1)𝑑𝑟1                (2.15) 

equation (2.13) becomes  

∑ 𝐹𝑖𝑗𝑎𝛼𝑗𝑛
𝑗=1 = 𝜀𝛼 ∑ 𝑆𝑖𝑗𝑎𝛼𝑗𝑛

𝑗=1  ;       𝑜𝑟        𝑭𝒂 = 𝑺𝒂𝜺                       (2.16) 

where ε is an n x n diagonal matrix with elements εα  and  a  is an n x n matrix with elements of 

aij. Equation (2.16) is called the Roothaan equation. In order to determine MOs the Roothaan 

equation needs to be solved. To obtain nontrivial solutions of the Roothaan equations the 

following secular equation need to be solved with the SCF method (F and S depend on the MO): 

     |𝑭 − 𝜀𝛼𝑺| = 0     (2.17) 

Let us write Fij explicitly: 

   𝐹𝑖𝑗 = ℎ𝑖𝑗 + ∑ 𝑃𝑘𝑙[(𝑖𝑗|𝑘𝑙) −  1
2

(𝑖𝑙|𝑘𝑗)]𝜇,𝑘,𝑙     (2.18) 

where the density matrix elements are defined as 𝑃𝑘𝑙 = 2∑ 𝑎𝑘𝜇∗ 𝑎𝑙𝜇𝜇  and the one-electron 

integrals hij and two-electron integrals (ij|kl) are defined as: 

ℎ𝑖𝑗 = ∫𝜑𝑖∗(1)ℎ1𝜑𝑗(1)𝑑𝑟1                                                   (2.18a) 
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(𝑖𝑗|𝑘𝑙) = 𝑎𝑘𝜇∗ 𝑎𝑙𝜇 ∫𝜑𝑖∗(1)𝜑𝑗(1)𝜑𝑘∗(2) 1
𝑟12
𝜑𝑘∗(2)𝜑𝑙(2)𝑑𝑟1𝑑𝑟2                   (2.18b) 

The schematic of the SCF procedure is given in Fig. 2.1. First, the trial set of Roothaan 

basis functions and initial orbitals with initial aiα coefficients need to be chosen to construct 𝜓𝑖 

(2.12) and, using equations (2.14) and (2.15), to calculate the overlap and Fock matrices. Then, 

the Slater determinant (2.17) is solved for the energies εα and coefficients aiα. Using this new set 

of coefficients, the process is started again and continued until the convergence criteria are 

reached (usually energies are compared at every step and the result is considered converged if 

the difference is less than 10-6). During this iteration process, one-electron integrals are 

calculated once, but two-electron integral indices run over the total number of basis functions 

and in principle need to be calculated n4 times. Thus, the choice of basis set functions is very 

important, meaning that one cannot use an excessively large set in the calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  The schematic of the SCF procedure. 
 

To summarize, the Hartree-Fock method is variational and uses a variational 

wavefunction in the form of the single Slater determinant. Slater determinant, on the other hand, 

is built from the complete set of spin-orbitals. By variation of the set of coefficients in the Slater 

determinant in addition to the simultaneous variation of MO coefficients in the basis set 

expansion, the total electronic wavefunction is obtained with the lowest possible energy for a 

given set of orbitals. 
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 2.3. Basis sets 
From HF theory, the energy (HF limit) that can be reached in the limit of infinite basis set 

is well defined. As already mentioned, one cannot use infinite basis sets in the calculation, thus 

optimizing the mathematical functions (basis sets) that allow reaching the HF limit is very 

important. Using finite basis sets generates basis-set truncation errors. Choosing the finite basis 

set that minimizes this error is important. 

The basis set is the set of mathematical functions from which the wavefunction (spatial 

orbital) is constructed. While choosing the basis sets one needs to keep in mind that the number 

of two-electron integrals increases as n4, n being the number of basis functions; truncation error 

needs to be minimal; and, finally, the basis functions need to be physical, meaning that these 

functions need to have larger amplitudes where electron probability density is high.  In general, 

many different kinds of basis sets could be used. Two common choices are described below. 

 

 2.3.1 Slater type orbitals 
Mathematically, Slater type orbitals (STOs) that neglect radial nodes are neglected 

[Slater-30] written as 

𝜙𝑛𝑙𝑚(𝑟,𝜃,𝜙; 𝜉) = 𝑁𝑟𝑛∗−1𝑒−𝜉𝑟𝑌𝑙𝑚(𝜃,𝜙)    (2.19) 

where 𝑌𝑙𝑚(𝜃,𝜙) are spherical harmonics depending on angular momentum quantum numbers l 

and m, ξ can be chosen from the Slater rules [Slater-30] and is related to the effective charge as 

ξ=Zeff/n*, n* is the effective principal quantum number and is related to the true principal 

quantum number as follows: n→n*: 1→1, 2→2, 3→3, 4→3.7, 5→4, 6→4.2…, and the 

normalization constant is given as 𝑁 = (2𝜉)𝑛
∗+0.5

[(2𝑛∗)!]0.5 . The effective charge is defined as Zeff =Z - σ, 

where Z is the atomic number and σ is the shielding or screening constant. The screening 

constant can be evaluated using Slater rules [Slater-30]: 

For each group of electrons (for a given principal quantum number grouped as 

(1s)(2s,2p)(3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p) ... the shielding constant is a sum of the following 

contributions:  

(i) All the other electrons in the same group as the electron of interest shield an amount of 

σ = 0.35 except for the 1s group where the contribution amounts to 0.30. 
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(ii) For the (s, p) type of group, the shield amount is 0.85 from each (n-1) and 1.00 from 

(n-2) and lower shell electrons. 

(iii) For group types (d) and (f) the shield amount is 1.00 from all the electrons below the 

one of interest. 

For example, consider nitrogen with electronic configuration (1s2) (2s2, 2p3). The 

screening constant and effective nuclear charge for each electron can be calculated using Slater 

rules:  

2p electron:     σ = (4×0.35) + (2×0.85) = 3.10     Zeff = Z – σ = 7 – 3.10 = 3.90 

2s electron:     σ = (4×0.35) + (2×0.85) = 3.10     Zeff = Z – σ = 7 – 3.10 = 3.90 

1s electron:     σ = (1×0.30) = 0.30                       Zeff = Z – σ = 7 – 0.30 = 6.70 

The farthest electron from the core “sees” the least positive charge of the nucleus. The calculated 

screening constants and effective charges are summarized in Clementi et al. [Clementi-63]. 

At larger distances from the nucleus, STO basis sets very closely approximate hydrogen-

like atomic orbitals. However, for different systems such as molecules with more than two 

atoms, the STOs are not practical. 

 

 2.3.2 Gaussian type orbitals 
Gaussian type orbitals (GTOs), proposed by S. F. Boys [Boys-50] make ab-initio 

calculations computationally more effective compared with STOs. 

A GTO in Cartesian coordinates is written as 

𝜙𝑖𝑗𝑘(𝑥,𝑦, 𝑧;𝛼) = 𝑁𝑥𝑖𝑦𝑗𝑧𝑘𝑒−𝛼(𝑥2+𝑦2+𝑧2)    (2.20) 

where i, j and k are positive integers, α is the positive exponent controlling the width of the GTO, 

and the normalization constant is 𝑁 = �2𝛼
𝜋
�
3/4

�(8𝛼)𝑖+𝑗+𝑘𝑖!𝑗!𝑘!
(2𝑖)!(2𝑗)!(2𝑘)!

�
1/2

. The orbitals are called s- type 

orbitals if i = j = k = 0, p-type if i = j = k =1, and d-type when i = j = k = 2. 

The “Gaussian product theorem” puts GTO at an advantage compared with STO in terms 

of computational speed.  According to the theorem, the product of two GTOs centered on two 

different centers is equivalent to the Gaussian function centered on a point along the axis 

connecting them. Thus, for example, four-center integrals are reduced to two-center integrals, 

and eventually one-center integrals. However, GTOs have its disadvantages also. For instance, a 
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single GTO basis function has significant errors when compared to a single STO, especially near 

the nucleus. 

 

 2.3.3 Contracted Gaussian functions 
Using GTOs (for atoms and molecules) two-electron integrals are calculated very 

effectively (compared with STO), but are not optimal basis sets and have different functional 

behavior (especially near and far from nucleus) from the behavior of molecular orbitals. Thus, a 

better basis set is preferable. Hehre, Stewart, and Pople had the idea to linearly combine GTOs to 

approximate STOs to produce the so-called contracted Gaussian functions [Pople-69]. 

A number of GTOs- called primitives- are linearly combined, each with different α 

values, and normalized to give a “contracted” Gaussian function,  

𝐺𝑐 = ∑ 𝑐𝑖𝐺𝑝𝑀
𝑖=1                       (2.21) 

where Gp is a primitive Gaussian, M the number of Gaussians, and the ci are contraction 

coefficients [Pople-69]. The contraction coefficients are optimized to mimic STOs. The term 

used for the “contracted” Gaussian functions is STO-MG (Single-ζ [Cramer-04]) where M is the 

number of primitive GTOs used. For example, for STO-3G three primitive GTOs are used per 

AO or MO.   

 

 2.4. Configuration interaction 
Until now, the electron correlation term has been treated in an averaged way, such that 

each electron is moving in an averaged field of nuclei and other (n-1) electrons, leading to the 

Hartree-Fock SCF procedure. Improving inclusion of electron correlation is an ongoing task in 

electronic structure calculations. The first choice is to construct a wavefunction using not one but 

many Slater determinants or so called “configuration state functions” (CSF). The exact electronic 

wavefunction can be written as: 

𝜓𝑒𝑙 = ∑ 𝐴𝑖𝜑𝑖𝑖      (2.22) 

where the sum is over finite number (in all applications) of determinants 𝜑𝑖 (over all 

configurations of the orbitals) and 𝐴𝑖 are expansion coefficients. This ab-initio method, in which 

the total electronic wavefunction is expressed as a linear combination of the Slater determinants, 

is known as “configuration interaction” (CI). It includes electron correlation neglected in the HF 
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method. Ideally one would need to use an infinite number of Slater determinants and also an 

infinite number of basis sets to obtain an exact solution of the time independent Schrödinger 

equation as shown schematically in Fig. 2.2, but this is computationally impossible and the 

infinite sum in (2.22) is truncated at some point. Existing ab-initio methods (for example the 

MCSCF-method) provide a systematic approach to the solution of the time-independent 

Schrödinger equation (Fig.2.2) (Chapter 2.5). 

 

 

 

Figure 2.2. Schematic of a systematic approach to the exact solution of the time-independent 
Schrödinger Equation. 
 

 2.5. Multiconfiguration self-consistent field (MCSCF) method 
 

In MCSCF calculations a (finite) linear combination of CSFs (or configurations of Slater 

determinants) is used to approximate the exact electronic wavefunction of a system, in contrast 
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to the HF method, where only one determinant is used. The Slater determinants (configurations) 

correspond to the possible electron occupation of different molecular orbitals (MOs).  

𝜓𝑒𝑙 = ∑ 𝐴𝑖𝜑𝑖𝑁
𝑖       (2.23) 

Such a wavefunction is called ‘multiconfiguration self-consistent-field’ (MCSCF) wavefunction, 

in which the basis functions are optimized for a combination of configurations. By a variation of 

the set of expansion coefficients (𝐴𝑖) in the CSFs or determinants, in addition to the MO 

coefficients (aij), the total electronic wavefunction is obtained with the lowest possible energy 

[Hinze-67].  

In MCSCF calculations, the specification of how many MOs are occupied is crucial. One 

needs to specify the so-called “active” space. MCSCF active space choices are often abbreviated 

as ‘(m,n)’ where m is the number of electrons and n is the number of orbitals (see chapter 5 for 

the calculations of potential curves of the oxygen molecular ion, and Appendix E for an input-

output example). 
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Chapter 3 - THEORY AND NUMERICAL METHODS  
“It is the theory that decides what can be observed”.  

Albert Einstein 1921. 
 

In this chapter the theory and the numerical methods used in our calculations are 

summarized. 

 3.1 Time-dependent Schrödinger equation  
In 1926 the basic equation of quantum mechanics was introduced by Erwin Schrödinger 

(1887-1961). The solution of the equation is the wavefunction, which is used to describe, for 

example, atoms or molecules in intense laser fields, collisions, or interactions with metal 

surfaces. 

For describing molecular dynamics in intense laser fields, one needs to solve the time 

dependent Schrödinger equation (TDSE). The single-particle three-dimensional TDSE has the 

form: 

     𝑖 𝜕
𝜕𝑡

Ψ(𝑟, 𝑡) = 𝐻�Ψ(𝑟, 𝑡)                          (3.1) 

where atomic units have been used with  e = ћ  = me = 1 (Appendix F), and typically the 

Hamiltonian is given as: 

               𝐻� = 𝑇� + 𝑉� = −∇2

2
+ 𝑉�(𝑟, 𝑡)      (3.2) 

where 𝑇�  is kinetic energy and 𝑉�  is potential energy operator of the system. If the Hamiltonian is 

time independent (3.1) can be integrated to obtain: 

 Ψ(𝑟, 𝑡) = exp�−𝑖𝐻�𝑡�Ψ(𝑟, 0)  .                                            (3.3) 

Introducing small time intervals Δt such that t = NΔt and the full time dependence of the 

wave packet is obtained by iteratively propagating each of the N time step: 

Ψ(𝑟, 𝑡 + Δ𝑡) = exp�−𝑖𝐻�Δ𝑡�Ψ(𝑟, 𝑡) + 𝒪(Δ𝑡2)                                  (3.4) 

 

 3.1.1. Crank-Nicholson split operator method (C-N method) 
The Crank-Nicolson (CN) method is a finite difference method which is used to solve 

differential equations such as the TDSE. It is unconditionally stable [Press-92]. 

For a particle in an external field V(r,t), the Hamiltonian is given as equation (3.2). Since the 

kinetic T and potential V energy operators do not commute, the sum in the exponent in equation 

http://thinkexist.com/quotation/it_is_the_theory_that_decides_what_can_be/194898.html�
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(3.4) cannot be written as a product of the exponential functions containing only V and only T 

operators. Therefore the Baker–Campbell–Hausdorff formula [Reinsch-00, Bialynicki-69, 

Niederhausen-07] is applied which gives: 

exp�−�𝑇� + 𝑉��Δ𝑡� = exp�−𝑉�Δ𝑡/2� exp�−𝑖𝑇�Δ𝑡� exp�−𝑉�Δ𝑡/2� + 𝒪(Δ𝑡3). 

This expression is called the split-operator method and is accurate up to errors of the order Δt3. 

Using Cayley’s form for expressing the exponent in (3.3a) for a time step Δt  

      exp�−𝑖𝐻�Δ𝑡� =
1 −  12 𝑖𝐻�Δ𝑡

1 +  12 𝑖𝐻�Δ𝑡
                              (3.5) 

one can obtain: 

    Ψ(𝑡 + Δ𝑡) �1 +   1
2

 𝑖𝐻�Δ𝑡� = Ψ(𝑡)(1 −   1
2

 𝑖𝐻�Δ𝑡) .                        (3.6) 

Let us assume that the time independent Hamiltonian has the form: 

                                        𝐻� = 𝐴 𝜕2

𝜕𝑥2
+ 𝐵 𝜕

𝜕𝑥
+ 𝐶𝑉(𝑥)                              (3.7) 

where A, B and C are constants, V potential energy. Using so called three-point formulas for the 

differentials  
𝜕
𝜕𝑥2

𝛹𝑛 =
𝛹𝑛+1 − 2𝛹𝑛 + 𝛹𝑛−1

𝛥𝑥2
    and      

𝜕
𝜕𝑥

𝛹𝑛 =
𝛹𝑛+1 − 𝛹𝑛−1

2𝛥𝑥
      (3.8) 

     

(where n stands for the grid point number in the x direction) one obtains by combining (3.7) and  

(3.5) 

𝛹𝑛(𝑡 + 𝛥𝑡) + 𝑖
𝛥𝑡
2
�𝐴𝑛

𝛹𝑛+1(𝑡 + 𝛥𝑡) − 2𝛹𝑛(𝑡 + 𝛥𝑡) + 𝛹𝑛−1(𝑡 + 𝛥𝑡)
𝛥𝑥2

+ 𝐵𝑛
𝛹𝑛+1(𝑡 + 𝛥𝑡) −𝛹𝑛−1(𝑡 + 𝛥𝑡)

2𝛥𝑥
+ 𝑉𝑛𝛹𝑛(𝑡 + 𝛥𝑡)� = 

= 𝛹𝑛(𝑡) − 𝑖
𝛥𝑡
2
�𝐴𝑛

𝛹𝑛+1(𝑡) − 2𝛹𝑛(𝑡) + 𝛹𝑛−1(𝑡)
𝛥𝑥2

+ 𝐵𝑛
𝛹𝑛+1(𝑡) −𝛹𝑛−1(𝑡)

2𝛥𝑥
+ 𝑉𝑛𝛹𝑛(𝑡)�          

(3.9) 

which is a tridiagonal matrix equation: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑋1

2 𝑋13 0
𝑋21 𝑋22 𝑋23

0 𝑋31 𝑋32
⋯

0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0 ⋯ 𝑋𝑁−11 𝑋𝑁−12 𝑋𝑁−13

0 𝑋𝑁1 𝑋𝑁2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎝

⎜
⎜
⎛

Ψ1(𝑡 + Δ𝑡)
Ψ2(𝑡 + Δ𝑡)
Ψ3(𝑡 + Δ𝑡)

⋮
Ψ𝑁−1(𝑡 + Δ𝑡)
Ψ𝑁(𝑡 + Δ𝑡) ⎠

⎟
⎟
⎞

= 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑌1

2 𝑌13 0
𝑌21 𝑌22 𝑌23

0 𝑌31 𝑌32
⋯

0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0 ⋯ 𝑌𝑁−11 𝑌𝑁−12 𝑌𝑁−13

0 𝑌𝑁1 𝑌𝑁2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎝

⎜
⎜
⎛

Ψ1(𝑡)
Ψ2(𝑡)
Ψ3(𝑡)
⋮

Ψ𝑁−1(𝑡)
Ψ𝑁(𝑡) ⎠

⎟
⎟
⎞

           (3.10) 

 

N is the total number of grid points in the x direction and the matrix elements are: 

𝑋𝑛1 = 𝑖 Δ𝑡
2(Δ𝑥)2

𝐴𝑛 − 𝑖 Δ𝑡
4Δ𝑥

𝐵𝑛          

𝑋𝑛2 = 1 − 𝑖 Δ𝑡
(Δ𝑥)2

𝐴𝑛 + 𝑖 Δ𝑡
2
𝑉𝑛           

𝑋𝑛3 = 𝑖 Δ𝑡
2(Δ𝑥)2

𝐴𝑛 + 𝑖 Δ𝑡
4Δ𝑥

𝐵𝑛           

𝑌𝑛1 = −𝑖 Δ𝑡
2(Δ𝑥)2

𝐴𝑛 + 𝑖 Δ𝑡
4Δ𝑥

𝐵𝑛      (3.11) 

𝑌𝑛2 = 1 + 𝑖 Δ𝑡
(Δ𝑥)2

𝐴𝑛 − 𝑖 Δ𝑡
2
𝑉𝑛         

𝑌𝑛3 = −𝑖 Δ𝑡
2(Δ𝑥)2

𝐴𝑛 − 𝑖 Δ𝑡
4Δ𝑥

𝐵𝑛          

This system of equations is solved using the TRIDIAG routine (adjusted to double precision) 

from Numerical Recipes [Press-92] (see also [Niederhausen-07]). 

 

 3.1.2 FFT method 
There is another method to do time evolution of the wave packet instead of the CN 

method. This method involves transforming the Schrödinger equation into momentum space 

where the momentum operator and kinetic energy operator are multiplicative operators. 

𝑇 + 𝑉(𝑥, 𝑡) = 𝑝2 2𝑚⁄ + 𝑉(𝑥, 𝑡) . Using (3.4) and the split-operator method results in: 

Ψ(𝑥, 𝑡 + ∆𝑡) = exp �−𝑖 𝑉
2
∆𝑡� exp (−𝑖 𝑝

2

2𝑚
∆𝑡) exp �−𝑖 𝑉

2
∆𝑡�Ψ(𝑥, 𝑡)    (3.12) 

The procedure of time evolution of the wave packet is as follows: the first step is to 

multiply the wave packet by the exponent containing the potential energy; the second step is to 
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Fourier transform the product and multiply that by the exponent containing the momentum 

operator; the last step to inverse Fourier transform the product and multiply that by the third 

exponent containing the potential energy. 

 

 3.2 Imaginary time propagation 
Imaginary time propagation is a reliable method for obtaining the ground state of the 

system. The wavefunction in (3.1) can be expanded as a superposition of eigenstates φν: 

    Ψ(𝐫⃗, 𝑡) = ∑ 𝑎𝜈𝜑𝜈(𝑟)𝑒−𝑖𝐸𝜈𝑡𝜈         (3.13) 

By substituting t →- iτ, the time evolution equation (3.3) leads to an exponential decay of the 

wavefunction 

 Ψ(𝑟, 𝜏) = exp�−𝐻�𝜏�Ψ(𝑟, 0) = ∑ 𝑎𝜈𝜑𝜈(𝑟)𝑒−𝐸𝜈𝜏𝜈         (3.14) 

When propagated in imaginary time the eigenfunctions decay exponentially with a rate given by 

their energies. The ground state decays slowest. Thus, starting with a randomly chosen 

wavefunction Ψ, in the limit of large τ, the wavefunction will be proportional to the ground state   

    limτ→∞ Ψ(𝑟, 𝜏) = 𝑎0𝜑0𝑒−𝑖𝐸0𝜏    (3.15) 

After choosing an initial trial wavefunction the imaginary time propagation is carried out using 

the CN propagation method until the ground state wavefunction is obtained to predetermined 

accuracy.  

 

 3.3 Absorbers 
In the simulation it is impossible to make an infinite numerical grid. It always has limits 

that could cause reflection of the wave packet. There are several methods for avoiding this 

reflection including complex rotation [Ho-83], splitting the wavefunction at the boundaries 

[Chelkowski-96], and a negative imaginary potential [Hussain-00, Poirier-03, Muga-04]. The last 

method- negative imaginary potential - is the one used in our calculations.  

A negative imaginary potential −iW(r) is added to the Hamiltonian 

𝐻𝑡𝑜𝑡 = 𝐻 + 𝐻𝑎 = 𝐻 − 𝑖𝑊(𝑟)     (3.16) 

where H is the original Hamiltonian (see equation (3.2) for example) and Ha is the negative 

imaginary potential, called “absorbers” [Niederhausen-07].  
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 3.4 Coupled channel propagation 
The Crank-Nicolson scheme described above can be applied to systems including 

propagation of the coupled wave packets on two or more potential curves. This application for 

the motion of the nuclear wave packet on two BO potential curves ‒ coupled with dipole 

coupling matrix elements ‒ is given in Chapters 4, 5 and 6. 

In general there can be any number of coupled channels, but the case of three coupled 

wavefunctions is discussed below. The TDSE for the nuclear part of the wavefunction in the case 

of the three states can be written as: 

    −𝑖 𝑑
𝑑𝑡
�
Ψ1(𝑅)
Ψ2(𝑅)
Ψ3(𝑅)

� = (𝐻� + 𝐻�𝑐)�
Ψ1(𝑅)
Ψ2(𝑅)
Ψ3(𝑅)

�    (3.17) 

where the Hamiltonian 𝐻� = 𝑇� + 𝑉�  corresponds to the wave packet propagation discussed in 

previous sections (Chapter 2.1) and 𝐻�𝑐  accounts for the coupling of wave packets propagating on 

given states. Note that notation is changed, we dropped subscript N for nuclei (𝜓𝑁 (𝑅))  and now 

Ψ𝑖(R) (i =1,2,3) refers to a nuclear wavefunction in each state (in this case three). Note that the 

phases between the wave functions in (3.17) do not matter because we are considering the phase 

of the electronic wavefunction. 

The Hamiltonian of the uncoupled system is given by a tridiagonal matrix. The total 

Hamiltonian of the coupled system is therefore given by a block matrix, where the diagonal 

blocks are tridiagonal and the off-diagonal blocks, which introduce the coupling, are diagonal 

𝐻�𝑡𝑜𝑡 = 𝐻� + 𝐻�𝑐 =

⎝

⎛
∖∖∖    ∖    ∖  

   ∖  ∖∖∖    ∖  

  ∖     ∖  ∖∖∖ ⎠

⎞ = 

=

⎝

⎜
⎛
∖∖∖

∖∖∖

∖∖∖
⎠

⎟
⎞

+

⎝

⎜
⎛

   ∖    ∖  

   ∖     ∖  

  ∖     ∖  
⎠

⎟
⎞

            (3.18) 

Note that if 𝐻�𝑐 = 0 wave packets propagate on each state separately (no coupling). The wave 

packet time evolution is achieved by the split-operator scheme at each time step: 

exp(−𝑖𝐻𝑡𝑜𝑡Δ𝑡) = exp �−𝑖𝐻𝑐
Δ𝑡
2
� exp(−𝑖𝐻Δ𝑡) exp �−𝑖𝐻𝑐

Δ𝑡
2
� + 𝒪(Δ𝑡3)              (3.19) 

The coupling part of the Hamiltonian can be written as a sum of three separate matrices  
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𝐻�𝑐 =

⎝

⎜
⎛

   ∖    ∖  

   ∖     ∖  

  ∖     ∖  
⎠

⎟
⎞

   =

⎝

⎛
   ∖  

   ∖  

⎠

⎞ +

⎝

⎛    ∖  

   ∖  ⎠

⎞ +

⎝

⎛
  ∖  

  ∖  ⎠

⎞                (3.20) 

 

Again using the split-operator technique (3.19), the coupling will reduce to 2x2 couplings 𝐻�𝑐
𝑖𝑗 

acting only on the two sattes i and j with i ≠ j. It can be shown that 

 

exp �−𝑖𝐻�𝑐
𝑖𝑗 Δ𝑡

2
� = �1 0

0 1�  𝑐𝑜𝑠 �𝐷 Δ𝑡
2
� − 𝑖 �0 1

1 0�  𝑠𝑖𝑛 �𝐷 Δ𝑡
2
� (3.21) 

where D=dijE is the off-diagonal coupling matrix element corresponding to the coupled states i 

and j multiplied by an electric field strength [Niederhausen-07]. 

Thus the coupling of the wavefunction for the three states can be represented as a 

successive application of two-channel couplings involving the split-operator scheme, leading to  

simple rotations of the wavefunction between the two sates. The case of a coupled state 

calculation for two states of D2
+ is discussed next (see Chapter 4 for the numerical results using 

this model). 

 
 

 3.4.1 Two - state model for the nuclear wave packet dynamics in molecular ions 
We model the nuclear dynamics in the pump-probe sequence (Fig. 4.1), where pump 

pulse is ionizing the neutral diatomic molecules and delayed (delay is designated as τ in further 

discussions) probe pulse can either dissociate (Chapters 4-6) or Coulomb explode the molecular 

ion (Chapter 7). In our model we assume that the neutral diatomic molecules are singly ionized 

by an intense short laser field. The quantum state of the resulting molecular ion can be 

approximated as 

Φ(𝑟,𝑅; 𝑡) = 1
√2
�Ψ1(𝑅, 𝑡)𝜓𝑒𝑙1(𝑟,𝑅, 𝑡) + Ψ2(𝑅, 𝑡)𝜓𝑒𝑙2(𝑟,𝑅, 𝑡)�     (3.22) 
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where Ψ1 and Ψ2 are nuclear wave-functions, 𝜓𝑒𝑙1 and 𝜓𝑒𝑙2 are the electronic states of the 

molecular ion in the BO approximation (for example 1sσg and 2pσu states for H2
+), and  𝑟��⃗  is the 

electron position vector. The bound and dissociating nuclear motions of the molecular ion can be 

described in this two-electronic-state model by projecting out the electronic states. The Ψ1 and 

Ψ2 nuclear wave-function components can be obtained from a set of coupled equations, 

𝑖 𝜕
𝜕𝑡
�Ψ1

(𝑅, 𝑡)
Ψ2(𝑅, 𝑡)� = �

𝑇𝑅 + 𝑉1(𝑅) 𝑑12(𝑅)𝐸(𝑡 − 𝜏)
𝑑12(𝑅)𝐸(𝑡 − 𝜏) 𝑇𝑅 + 𝑉2(𝑅) � × �Ψ1

(𝑅, 𝑡)
Ψ2(𝑅, 𝑡)�     (3.23) 

where μ is the reduced mass of the nuclei,   𝑇𝑅 = − 1
2𝜇

𝜕
𝜕𝑅2

, and 𝑉1(𝑅) and 𝑉2(𝑅) are the BO  

potential curves of the molecular ion. The dipole coupling between the two electronic states in 

the laser field is defined as 𝑑12 = 〈𝜓𝑒𝑙1|𝑟|𝜓𝑒𝑙2〉 [Kulander-96]. The laser field E is linearly 

polarized along the internuclear axis. Note that the maximal propagation times in our numerical 

applications are significantly smaller than the rotational periods of the diatomic molecules, 

therefore, we can neglect the rotation of the molecules. 

 We assume that the initial state of the molecular ion is bound and solve Eq. (3.23) 

numerically using the Crank-Nicholson method [Feuerstein-03-1, Press-92, Thumm-08] 

assuming that 

Ψ1(𝑅, 0) = ∑ 𝑎𝜇Ψ𝜇(𝑅)𝜇 ,        Ψ2(𝑅, 0) = 0   ,                                  (3.24) 

where {aμ} are the set of amplitudes (in general complex) in the basis of the stationary 

vibrational eigenstates {Ψμ} of the diatomic molecular ion electronic ground-state potential 

V1(R). The ionization process is often modeled with Franck-Condon (FC) factors {|aμ|2} in the 

sudden approximation [Bransden-03, Thumm-08, Magrakvelidze-09] and all phases are 

randomly set to zero in order to obtain the set of real amplitudes {aμ} for the bound initial wave 

packet (please see Chapter 6 for the alternative ADK ionization model). Using imaginary time 

propagation the trial function (for example Gaussian) on the ground-state BO potential curve of 

the molecule is propagated, and the ground state wavefunction Ψ0 of the neutral parent molecule 

is calculated. Subsequent projection on the vibrational states of the molecular ion {𝑎𝜇 =

�Ψ𝜇�Ψ0�} generates the real function Ψ1(𝑅, 0). Without an external laser field, the two states in 

Eq. (3.23) are decoupled, and the nuclear wavefunction evolves as a bound nuclear wave packet 

on the V1 potential curve, undergoing characteristic cycles of dephasing and revival [Feuerstein-

03-1, Thumm-08].  
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 3.4.2. Quantum beat spectra (R-dependent power spectra) 
Quantum beat (QB) spectra (known also as power spectra [Thumm-08]) are very useful 

to identify the given potential curve characteristics that are obtained by Fourier transforming the 

probability density as a function of internuclear distance and propagation time (see Eq. 3.25 

below). The oscillation (beating) occurs because the bound nuclear vibrational wavefunctions on a 

given potential curve undergo dephasing, oscillating at different frequencies. Each of the QB 

frequencies can be linked to the contributing vibrational energy levels of the vibrational wave 

packet and, most importantly, the derivative of the molecular potential energy curve can be 

mapped from the power spectra. The details on how we numerically obtain power spectra are 

discussed below. 

In the two-state model (discussed in 3.4.1), the amplitudes {aμ} in Eq. (3.24) remain time 

independent during the field-free propagation from t = 0 to the probe time delay τ (Fig. 4.1). The 

nuclear probability density as a function of time at τ is written as 

𝜌(𝑅, 𝜏) = �𝑑𝑟|Φ(𝑟,𝑅; 𝜏)|2 = �Ψ𝑔(𝑅, 𝜏)�
2

+ |Ψ𝑢(𝑅, 𝜏)|2 

=  ∑ �𝑎𝜇�
2

𝜇 �Ψ𝜇(𝑅)�
2

+ ∑ 𝑎𝜇∗𝑎𝜈𝑒−𝑖�𝐸𝜈−𝐸𝜇�𝜏Ψ𝜇∗(𝑅)Ψ𝜈(𝑅)𝜇≠𝜈     (3.25) 

It is very important to note that the diagonal term (first term in the second line) is time 

independent and gives an incoherent background to the wavefunction probability density. We 

subtract this diagonal contribution from the probability density spectra thereby getting rid of 

static terms in the incoherent sum included in Eq. (3.25). We Fourier transform the remaining 

coherent (time dependent) terms over the finite sampling time T and take the square of the result, 

obtaining the power spectrum 

𝑃(𝑅,𝜔;𝑇) = �∑ 𝑎𝜇∗𝑎𝜈Ψ𝜇∗(𝑅)Ψ𝜈(𝑅)𝛿𝑇(Δ𝜔𝜇,𝜈 − 𝜔)𝑁
𝜇,𝜈=0 �

2
                (3.26) 

where the “broadened delta function” is defined as 

𝛿𝑇(Ω) ≡ 1
2𝜋 ∫ 𝑑𝑡𝑒𝑖Ω𝑡 = 1

𝜋
𝑒𝑖ΩT/2 sin(ΩΤ/2)

Ω
𝑇
0                                          (2.27) 

and centered at the QB energies Δωμ,ν=ων−ωμ. It is broadened due to the Fourier transformation 

over a finite time interval. In the limit of large sampling times, it becomes identical with the 

usual delta “function”, and the power spectrum P(R,  ω ;∞) reproduces the QB spectrum at 
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infinite resolution. Further details on the properties and interpretation of P(R, ω; T) can be found 

in [Thumm-08]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Morse potential for De=6, α=1 and R0=1. 
 

 3.5 Morse oscillator 
The potentials for diatomic molecules are often parameterized using the Morse potential 

[Morse-29]: 

  𝑉(𝑅) = 𝐷𝑒(1 − e−𝛼(𝑅−𝑅0))2              (3.28) 

where 𝐷𝑒 is the depth of the potential well (often called the dissociation energy), α accounts for 

the measure of the curvature at the bottom of the well, R is the internuclear distance, and R0 is 

the equilibrium bond distance. Figure 3.1 shows the Morse potential (3.28) for parameters De=6, 

α=1 and R0=1. Actually, Morse proposed a potential in the form [Morse-29] 

𝑉(𝑅) = 𝐷𝑒e−2𝛼(𝑅−𝑅0) − 2𝐷𝑒e−𝛼(𝑅−𝑅0) ,    (3.28a) 

but since the zero of the potential is relative one can subtract De from (3.28a) and obtain (3.28). 

With the Morse potential, an exact solution of the TDSE can be obtained [Morse-29]. Stationary 

states on a Morse potential have eigenvalues: 

𝐸(𝜈) = 𝜔0 �𝜈 + 1
2
� − 𝜔0𝜒0 �𝜈 + 1

2
�
2

+ ⋯   (3.29) 
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where 𝜔0 = 𝛼�2𝐷𝑒/𝜇 is the vibrational constant with the reduced mass μ of the diatomic 

molecule, and 𝜒0𝜔0 ≈ 𝜔0
2/(4𝐷𝑒) = 𝛼2/(2𝜇)  is the anharmonicity constant. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Probability density as a function of internuclear distance R and propagation time 
for D2. Black arrows indicate the oscillation period at the beginning of the propagation. Full 
and partial revival times are  indicated with blue arrows. 
 

 3.6 Quantum revivals  
The anharmonicity of the potential results in a quick dephasing of the wave packet, but 

only certain, possibly long propagation time, the relative phases of the nuclei vibrational wave 

packet can become similar or identical to the relative phases of the initial wave packet, leading to 

wavefunction revivals [Robinett-04]. In Fig. 3.2, the dephasing of the wave packet on the ground 

state of D2
+, partial (wave packet oscillates at integer fractions of the original oscillation period), 

and full  revivals (wave packet oscillates at the initial oscillation period) are shown [Robinett-

04]. 

For one dimensional systems, the wave packet can be written as a superposition of 

𝜑𝜈 eigenfunctions 

Ψ(𝑥, 𝑡) = ∑ 𝑎𝜈𝜑𝜈(𝑥)𝑒−𝑖𝐸𝜈𝑡∞
𝜈=0 ,                     (3.30) 
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where 𝑎𝜈 are expansion coefficients (FC amplitudes) and 𝐸𝜈 are energy eigenvalues, given by 

Eq.(3.29) for the Morse potential. At the revival, the condition Ψ(𝑥,𝑇𝑟𝑒𝑣) =  Ψ(𝑥, 0) needs to be 

satisfied (up to an overall arbitrary phase factor), which requires 

𝐸𝜈𝑇𝑟𝑒𝑣 = �𝜔0 �𝜈 + 1
2
� − 𝜔0𝜒0 �𝜈 + 1

2
�
2
� 𝑇𝑟𝑒𝑣 = 2𝜋𝑁𝜈        (3.31) 

where 𝑁ν are integers. Equation (3.31) for the next vibrational state can be written as: 

𝐸𝜈+1𝑇𝑟𝑒𝑣 = �𝜔0 �𝜈 + 3
2
� − 𝜔0𝜒0 �𝜈 + 3

2
�
2
� 𝑇𝑟𝑒𝑣 = 2𝜋𝑁𝜈+1   (3.32) 

Subtracting (3.31) from (3.32) will lead to: 

{𝜔0 − 2𝜔0𝜒0𝜈 − 2𝜔0𝜒0}𝑇𝑟𝑒𝑣 = 2𝜋𝑀𝜈    (3.33) 

where 𝑀ν are also integers. Repeating the same subtraction procedure on Eq.3.33 gives revival 

time for the Morse potential: 

𝑇𝑟𝑒𝑣 = 𝜋/𝜔0𝜒0                                         (3.34) 

According to equation (3.34) the half, third, quarter and so on fractional revivals are defined as 

Trev/2, Trev/3 Trev/4..., and wave packet oscillates with corresponding fractional periods (Fig.3.2). 

Note that if one follows the definition of 𝑇𝑟𝑒𝑣 by [Robinett-04], the result is twice the 𝑇𝑟𝑒𝑣 

defined by Eq. (3.34). One can fit any given binding potential curve with a Morse potential to get 

the Morse parameters and, using Eq. (3.34), calculate the revival time on this potential curve, so 

that the oscillation period at Trev/2 (Trev/3) is two (three) times the oscillation period at  Trev (see 

Fig. 3.2). 

 3.7 KER spectra calculations (FT method) 
In order to simulate KER spectra, we numerically propagate the coupled equations (3.23) 

for a sufficiently long time T, including field-free propagation of the nuclear wave packets after 

the action of the probe pulse. This allows us to separate the bound and dissociating parts of the 

nuclear motion by introducing the internuclear distance R1 as an effective range for the bound 

nuclear motion. The probability current associated with the dissociation of the molecular ion has 

relevant contributions for R > R1, whereas the bound motion remains restricted to distances R < 

R1. Fourier transformation of the dissociating parts of the nuclear wave packets over the interval 

[R1, Rmax] yields the momentum representations of the dissociating wave packets in the adiabatic 

channel i [De-11, Magrakvelidze-12-1] 

Ψ�𝑖𝑑𝑖𝑠𝑠(𝑃,𝑇) = ∫ 𝑑𝑅 Ψ𝑖𝑑𝑖𝑠𝑠(𝑅,𝑇)𝑅𝑚𝑎𝑥
𝑅1

𝑒−𝑖𝑃𝑅                          (3.35) 
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where Rmax is related to the size of the numerical grid. By incoherently adding the corresponding 

momentum distributions, we obtain the pump-probe-delay (τ) - dependent distribution of 

fragment KERs 

𝐶𝑑𝑖𝑠𝑠(𝐸, 𝜏) ∝ ∑ 𝜌𝑖𝑖𝑛𝑐𝑜ℎ(𝑃, 𝜏)𝑖                    (3.36) 

where E = P2 / 2M is the kinetic energy per fragment. Subtracting the large incoherent static 

contribution 

𝐶𝑖𝑛𝑐𝑜ℎ𝑑𝑖𝑠𝑠 (𝐸) = 1
𝑇 ∫ 𝑑𝜏𝐶𝑑𝑖𝑠𝑠(𝐸, 𝜏)𝑇

0                                (3.36a) 

from Cdiss we obtain the power spectrum as a function of the QB frequency f = ω/2π 

 

𝑃𝑑𝑖𝑠𝑠(𝐸,𝑓) = �∫ 𝑑𝜏𝐶𝑐𝑜ℎ𝑑𝑖𝑠𝑠(𝐸, 𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑇
0 �

2
                        (3.36b) 

Results using the FT method are given in Chapters 4, 5, and 6 for D2, and O2 molecules, and 

noble gas dimers, respectively. 

 3.8 Virtual detector 
Virtual detector (VD) is a method for extracting momentum distributions without 

propagating the wave packet over a large numerical grid [Feuerstein-03-1, Magrakvelidze12-1]. 

The momentum distribution is obtained for each time step at the fixed location and width of the 

VD.  The wavefunction can be written as 

Ψ(𝑟, 𝑡) = 𝐴(𝑟, 𝑡)exp (𝑖𝜑(𝑟, 𝑡))       (3.37) 

where 𝜑(𝒓, 𝑡) and 𝐴(𝒓, 𝑡) are the time-dependent phase and amplitude, respectively. The 

momentum information at a given detector position 𝑟𝑑 can be extracted from the phase 𝜑(𝒓, 𝑡). 

To reveal this information, we consider the current density  𝚥 at 𝑟𝑑 of the outgoing particles with 

mass μ, 

    𝚥(𝑟𝑑, 𝑡) = 𝜌(𝑟𝑑,𝑡)
𝜇

∇��⃗ 𝜑(𝑟𝑑, 𝑡)      with        𝜌(𝑟𝑑, 𝑡) = �𝐴(𝑟𝑑, 𝑡)�
2
      (3.38) 

The momentum can be obtained from the gradient of the phase 𝜑(𝑟𝑑, 𝑡) at each time and at a 

fixed position 𝑟𝑑 where the virtual detector is located.  

                  𝑘(𝑟𝑑, 𝑡) = 𝜇𝑣 = ∇𝜑(𝑟𝑑, 𝑡).                     (3.39) 

Then, by applying a ‘binning’ or ‘histogramming’ procedure, the momentum distribution dN/dk 

can be derived. 
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For simplicity, consider the one-dimensional case, where the VD is located at xd. The 

probability for finding the number ΔN of events that have momenta k within a small momentum 

interval Δk around the momentum value kj is then given by  

∆𝑁�𝑘𝑗� = ∆𝑘 ∫ 𝑑𝑡 𝑗(𝑥𝑑 , 𝑡) �1    𝑓𝑜𝑟  𝑘 ∈ [𝑘𝑗 − ∆𝑘/2,  𝑘𝑗 + ∆𝑘/2]
0   𝑒𝑙𝑠𝑒                                                      

�∞
0      (3.40) 

See [Feuerstein-03-1] for more details. 

 3.9 Dipole selection rules 
When the system is introduced into an electromagnetic field, the probability of finding it 

in a different state is non-zero. To obtain the so-called dipole selection rules, one needs to 

calculate the matrix elements of the electric dipole moment: 𝐷𝑖𝑗 = ∫𝜓𝑖∗𝑑𝜓𝑗𝑑𝑟, where 𝑑 = 𝑒𝑘𝑟𝑘 

with ek being the charges of N particles at coordinates rk and ψi and ψj are the wavefunctions of 

the states involved in the transition. 

The quantum numbers used below are defined as: 

L – electron orbital angular momentum; 

Λ – projection of L on the rotation axis; 

S – spin; 

Σ – projection of the spin (not to confuse with the same notation for Λ=0) ; 

J – electron total angular momentum (J⃗ = L�⃗ + S�⃗ ); 

Ω – projection of J (Ω = Λ+Σ). 

Selection rules for the homonuclear diatomic molecules in the same charge states are as 

follows. We need to distinguish the cases when light is polarized along the molecular axis and 

when it is polarized perpendicular to the molecular axis. In the first case the value of the 

projection Λ of the angular momentum on the internuclear axis needs to be same for both states. 

In addition, for states with defined parity, g (gerade symmetry) states are connected with u 

(ungerade symmetry) states and for the Σ - Σ (Λ = 0 - Λ = 0) transition, only + ↔ + and – ↔ – 

transitions are allowed (for diatomic molecules the system has additional symmetry- mirror 

reflection through an internuclear axis leading to + or - ). For the perpendicular polarizations the 

last rule holds, but only transitions between states with ΔΛ= ±1 are allowed. 

Thus, summarizing the selection rules we have: 

ΔΛ = � 0     for parallel transitions          
±1    for perpendicular transitions

� 
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+↔ + ;−↔ −; and+↮ −in Σ − Σ transitions; 

g ↔ u; u ↮ u and g ↮ g for homonuclear molecules. 

In addition, for light molecules ΔΣ = 0 since there is no spin in the dipole moment 

operators. For heavier molecules, where Ω, the total electronic angular momentum about the 

internuclear axis, is a good quantum number, dipole-allowed transitions require ΔΩ = 0,±1  

Ω=|Σ+Λ|. Note that the selection rules above are different for the photoionization of the 

homonuclear molecule in different charge states due to different symmetry of the states [Zare-98, 

Xie-90]. 
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Chapter 4 - HYDROGEN MOLECULES IN IR LASER FIELDS 

 

The focus of this chapter is the H2 (D2) molecule in IR fields. 

 4.1 Introduction 
H2 (D2) molecules have been heavily studied both experimentally and theoretically 

[Posthumus-04, Giusti-Suzor-95, Calvert-10]. When H2(D2) molecules are subjected to a strong 

laser field different processes can happen, such as: dissociation via one- or two- photons also 

known as bond softening (BS) [Bucksbaum-90, Posthumus-04] and above threshold dissociation 

[Zavriyev-90, Giusti-Suzor-90, Posthumus-04], bond hardening (BH) [Posthumus-04, 

Châteauneuf-98, Frasinski-99, Bandrauk-81, Walker-93, Bucksbaum-90], charge resonance 

enhanced ionization (CREI) [Zuo-95, Seideman-95, Codling-93, Cornaggia-91, Dietrich-92, 

Strickland-92, Williams-00] high order harmonic generation [Liang-94, Baker-06, Budil-93, 

Mercer-96, Hay-02], and CE occurring after removal of a second electron from the molecule 

[Ergler-06-2, Alnaser-05, Bandrauk-99, Ellert-98, Légaré-06, Chelkowski-07, Feuerstein-03]. 

The theoretical study of the dependence of BS and BH on laser parameters is presented in 

Section 4.2. 

The vibrational dynamics of wave packet motion of H2 and D2 molecules have been 

studied by analyzing the KER of the molecular ion fragments produced by a pump and second 

delayed probe laser pulse [Posthumus-04, Bocharova-11, Ergler-06-1, Alnaser-05, De-10, De-

11]. Section 4.3 focuses on the process of weakening the bond by a strong field, which induces 

the dissociation (also known as photo-dissociation) of D2
+ molecules, by comparing the 

measured and calculated KER spectra.  

There are several techniques for studying electron localization in diatomic molecules that 

include CEP locked or two-color asymmetric pump-probe pulses. “Electron localization” with a 

single symmetric circularly polarized pulse is discussed in Section 4.4. 
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 4.2 Dependence of bond softening and bond hardening on laser 

intensity, wavelength, and pulse duration for D2
+ 

By solving the TDSE, the time evolution of the wave packet can be calculated 

theoretically. We calculate the time evolution of an initial nuclear vibrational wave packet in D2
+ 

generated by the rapid ionization of D2 in an ultrashort pump-laser pulse based on a quantum-

mechanical model. The QB frequency and internuclear distance-dependent power spectra are 

obtained by Fourier transformation of the nuclear probability density with respect to the time 

delay between the spike of the pump pulse and the high-intensity spike of an intense probe-laser 

pulse. The probe pulse causes immediate Coulomb explosion, which allows imaging of the wave 

packet. The QB frequency spectra serve as a tool for visualizing and analyzing the nuclear 

dynamics in D2
+ in an intermittent external laser field (See Chapter. 3, Thumm-08, and 

Niederhausen-07 for more details). In this work, we model the external laser pulse with a 

pedestal (with about 5% of the peak intensity of the main pulse) to obtain more realistic pulses 

(Fig. 4.1). Variation in the intensity, wavelength, and duration of this probe-pulse pedestal allows 

us to identify the optimal laser parameters for the observation of field-induced BS and BH in 

D2
+. 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematics for the pump-probe pulse sequence. The main pulses (spikes) are 
shown in black and the pedestal (Gaussian-shape) of the pulse in red. In our simulations we 
assume that CE is instantaneous (ionization happens in the main peak of the probe pulse). 
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In Floquet theory, the interactions of the continuum wave (CW) laser field with the 

molecule are described using adiabatic laser-dressed potential curves [Giusti-Suzor-92, Sändig-

00, Williams-00], which are also referred to as “Floquet adiabatic molecular potential curves” or 

simply “Floquet curves.” The field-dressed curves (Floquet curves) correspond to the field-free 

adiabatic molecular potential curves that are shifted in energy by one or several photons due to 

the interaction with the laser field. The shift in energy depends on the net number of photons the 

molecule absorbs from the field.  We used short laser pulses in our simulation for which the CW 

Floquet picture may not be applicable without restrictions. The Floquet picture is a very good 

reference for the description of laser-molecule interactions with laser pulses of finite duration.  

        

 

 

Figure 4.2. Laser-dressed adiabatic molecular potential curves for D2
+ and a 500 nm CW laser 

field with an intensity of 5×1011 (solid red lines) and 1013 W/cm2 (dashed-dotted blue lines). 
Thin black dashed lines show field-free BO potential curves. 
 

As an example, Fig. 4.2 shows the field-dressed adiabatic potential curves for D2
+ in a 

500 nm CW laser  field for two different intensities, 5×1011 (solid red lines) and 1013 W/cm2 

(dashed -dotted blue lines) [Bates-53]. The curves are labeled as 1sσg−2nω and 2pσu−(2n−1)ω, 



33 

 

corresponding to the field-free potential curves and the net number of photons 2n and (2n-1), 

respectively, that are released to the photon field. The dipole-allowed coupling between field-

free potential curves of gerade and ungerade symmetries [Bransden-03], due to the absorption or 

release of an odd number of photons, leads to characteristic “avoided” crossings between Floquet 

curves. The avoided crossings near internuclear distances of R=4 and R=3 correspond to the one 

and three photon exchange between the molecular ion and the CW laser field, respectively. The 

gap between the adiabatic Floquet curves increases with increasing laser intensity. Near avoided 

crossings the BH well, which is also referred to as “vibrational trapping” or “dynamical 

dissociation quenching” [Châteauneuf-98], can be formed and the depth and shape of it is laser 

intensity dependent. At higher intensities it becomes shallower and wider, and, at sufficiently 

high intensities, loses the ability to bind BH states. The other interesting feature of field-dressed 

adiabatic curves is BS - dissociation of the molecule due either to classically allowed over-the-

barrier escape or by tunneling [Bucksbaum-90, Posthumus-04]. The less energetic Floquet 

potential curve below the gap forms a barrier that may enable BS dissociation. 

In sections 4.2.1- 4.2.3, the bound and dissociating nuclear motion of D2
+ in a laser pulse 

are discussed by examining how power spectra are affected by the laser pedestal parameters 

intensity, frequency, and duration. Even though all simulations were carried out for laser pulses 

with a finite pulse length (including the pedestal), it is shown that the terminology developed 

based on the Floquet picture is appropriate. For example, even though stable BH states can only 

exist in CW laser fields, evidence for transient BH states in laser pulses over a large range of 

pulse lengths is found. 

 4.2.1 Intensity dependence 
The R-dependent power spectra P(R,ω;T) for D2

+ propagating through 200 nm 20 fs 

(FWHM) Gaussian pedestal laser pulses are shown in Fig. 4.3 for different peak intensities 

(upper panels) and the corresponding Floquet field-dressed potential curves, which are displayed 

in red in the lower panels. The three different pedestal intensities are 1013 (left), 5×1013 (middle), 

and 1014 W/cm2 (right column). Note that the thin black lines in the lower panels correspond to 

the field-free adiabatic molecular potential curves. As for all other numerical results shown 

below, the molecular ion is assumed to be produced by the rapid ionization of D2 and is 

characterized by a FC distribution of stationary vibrational states, as described in Chapter 3.4.1.  
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The nodal structure of the spectra is due to the beating of two adjacent stationary vibrational 

states ��𝜒𝜇〉� and | �𝜒𝜈〉�  with frequency 𝑓 = Δ𝜔𝜇,𝑣 /2𝜋 [Thumm-08]. The thin black vertical lines 

link the minima of the 1-ω BH wells in the power spectra (upper row of graphs in Fig. 4.3) to 

BH wells in the Floquet potential curves (lower row). For the given intensities, the power spectra 

show a significant amount of nuclear probability density that is intermittently trapped in the 1-ω 

BH well. 

 

Figure 4.3 R-dependent power spectra for a logarithmic color scale (a)-(c) and field-dressed 
potential curves (res lines) (d)-(f) of D2

+ for different pedestal intensities. Graphs are plotted 
for 200 nm pedestal laser pulses with intensities of 0.1×1014 W/cm2 [(a) and (d)], 0.5×1014 
W/cm2 [(b) and (e)], and 1×1014 W/cm2 [(c) and (f)]. 
 

As the intensity increases the nuclear probability density in the 1-ω BH well increases 

due to the increase of probability that is associated with the bound motion of the molecular ions 

in field-dressed 1sσg potential curve. The calculations for intensity-dependent power spectra 
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confirm the intuitive expectations. First, the dissociation due to classical over-the-barrier motion 

of the two nuclei or by tunneling across the 1-ω BS barrier increases with increasing peak 

intensity. Second, BS progresses from depleting the highest vibrational state components of the 

nuclear wave packet with vibrational quantum numbers ν ≥ 4 (left column in Fig. 4.3) to the 

lowest vibrational components of the initial FC distribution (right column). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Same as Fig. 4.3, but for 800 nm pedestal laser pulses. 
 

 4.2.2 Wavelength dependence 
The same power spectra as in Fig. 4.3, but calculated for 800 nm in Fig. 4.4, indicate that 

the nuclear motion in D2
+ sensitively depends on the carrier wavelength. This dependence can be 

understood within the Floquet picture. As the photon energy decreases, the spacing in energy 

between Floquet potential curves decreases. This decrease increases the significance of couplings 

between more than two curves, which, in turn, may result in the overlap of (1-ω with 3-ω) BH 



36 

 

wells, reducing the BH effectiveness of the resulting, flatter, well. At 800 nm and 1013 W/cm2 

peak intensity (left column in Fig. 4.4), the power spectrum shows only weak evidence for the 

temporary trapping of nuclear probability density in the 1-ω BH well that is centered near R=5. 

The molecular ion remains most likely bound in the electronic ground state. At the higher 

intensities (middle and right columns), dissociation via BS becomes increasingly important but 

cannot be as clearly assigned to the 1-ω BS barrier as for the case of 200 nm wavelength. 

For the 800 nm and 5×1013 W/cm2 case shown in the middle column of Fig. 4.4, the 

corresponding 1-ω BH well has disappeared in the Floquet potential curve in graph (e) and most 

of the BH happens on the 3-ω BH well centered at smaller distances near R=3.5 in the power 

spectrum. The same can be seen for the 1014 W/cm2 intensity (right column). Note that despite 

the absence of the BH well on graph (e),  graph (b) also shows weak evidence for BH states in 

the 1-ω well near R=5 due to temporary vibrational trapping during the increasing laser intensity 

of the pedestal. 

Figure 4.5 summarizes a more systematic study of the wavelength dependence of BS and 

BH at a fixed intensity of 1013 W/cm2. For the different pulse wavelengths, the positions of one 

(or three) photon crossing(s) are different (thin black lines in the lower panels). For this reason 

we expect laser wavelength to affect BS and BH. In Figs. 4.5 (a)–(e), the power spectra show 

that dissociation by BS decreases with increasing wavelength, while the 1-ω BH well moves to 

larger internuclear distances. A very prominent BH well is visible for 200 nm wavelength in 

Figs. 4.5(a) and (f). For this wavelength, all vibrational eigenstates in the initial FC distribution 

above ν=2 are being depleted by BS, while the deep BH well traps even the highest initially 

occupied vibrational states. In Figs. 4.5(b) and 4.5(g) for 500 nm, the 1- ω BH well is visible but 

compared to the 200 nm case it has less probability density, while the nuclear motion in the 

electronic ground state remains bound. This trend continues for 800, 1024, and 1600 nm (the 

three right columns in Fig. 4.5) to the point that BH in the 1-ω well disappears at 1600 nm. The 

same conclusion can be drawn from the comparison of Figs. 4.3(c) and 4.4(c) above. As the 

wavelength increases, BS through and over the 3-ω well becomes energetically possible for an 

increasing number of stationary vibrational states of the nuclear wave packet.  However, as the 

simulated power spectra show, the peak intensity of 1013 W/cm2 is too low for three-photon 

processes to become relevant. Therefore, 3-ω BS and BH are not clearly noticeable in Fig. 4.5. In 
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the left four columns of Fig. 4.5, the positions of the 1-ω BH well agree in the power spectra and 

Floquet potential curves.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 The power spectra (a)-(e)  for the different laser wavelengths of 200 nm [(a) and 
(f)], 500 nm [(b) and (g)], 800 nm [(c) and (h)], 1024 nm [(d) and (i)],  and 1600 nm [(e) and 
(j)]. (Same logarithmic color scale as in Fig. 4.3) at fixed 1013 W/cm2 peak intensity pedestal 
laser pulses. Graphs (f)-(j) are field-dressed potential curves (red lines) for corresponding 
intensities. Field-free potentials are plotted as thin black lines. 
 

At 1600 nm, however, according to the Floquet picture the 1-ω BH has disappeared and BH is 

expected to happen near the 3-ω crossing point (Fig. 4.5(j)). This prediction of the CW Floquet 

picture is not fully confirmed in the power spectrum in Fig. 4.5(e) that shows very weak 

evidence of 1-ω BH states centered near R=7 and no apparent traces of 3-ω BS or BH. This 

mismatch can be related to the fact that the Floquet picture assumes infinite pulse lengths, while 

at 1600 nm the power spectrum simulates the propagation of the nuclear wave packet across a 

pedestal pulse with a length of L=20 fs (FWHM), corresponding to the illumination of the wave 

packet by the pedestal laser pulse over just two optical cycles and with a rapidly changing 
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envelope. Thus we interpret this discrepancy as due to both the onset of the breakdown of the 

Floquet picture for short pulses, and more importantly, an effective laser intensity in the power 

spectra that is much smaller than the peak intensity for which the Floquet curves were calculated. 

 

Figure 4.6 Power spectra as a function of QB frequency and internuclear distance in log 
scale. (Same color scale as in Fig. 4.4) for fixed peak intensity of 1014 W/cm2. The  power 
spectra are plotted for different (200, 800, 1600 nm) wavelengths and pedestal lengths 
(FWHM 50, 100, and 200 fs). 

 4.2.3 Pulse-length dependence 
Figure 4.6 summarizes the pulse length dependence of power spectra for different 

wavelengths, where the panels are ordered with pedestal wavelengths increasing from 200 (top) 

to 1600 nm (bottom).  From left to right the pedestal length increases from 50 to 200 fs. For each 

wavelength, the BH probability decreases with increasing pulse length. Intuitively one would 

expect that for longer pedestals BH would be more pronounced due to longer trapping times, but 

our simulations show the opposite. We relate this to the dominant influence of the pulse energy - 

longer pedestals transfer more energy to the molecule. This favors both dissociation by BS 
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directly from the electronic ground state (leaving less probability to be potentially trapped in a 

BH well) and the decay of BH states by nonadiabatic couplings to dissociative potential curves 

that are neglected in the BO approximation [Bransden-03]. For the lower wavelengths, the same 

pedestal pulse envelope includes more optical cycles. Thus, the power spectrum in Fig. 4.6 with 

the shortest wavelength and longest pulse duration is the most agreeable to an interpretation 

within the Floquet picture. However, as shown in the top right corner of Fig 4.6, this trend is 

somewhat difficult to follow over a large range of pulse lengths, since, for high pulse durations 

(high pulse energies) BS can dominate to the point that all bound states become depleted. For the 

200 nm case, BS depletes the ground state of the molecular ion leaving almost no population for 

the longest pulse length (200 fs). In contrast, for the higher wavelength cases (800 and 1600nm), 

the electronic ground state remains populated at all displayed pulse lengths but, as expected, gets 

increasingly depleted with increasing pulse length by BS over and through the 1-ω BS barrier. 

Thus, comparing all the calculated power spectra in Fig 4.6 suggests that BH is most pronounced 

at the shortest wavelengths and for the shortest pedestals. Adding Fig. 4.3 to the comparison, we 

can in addition conclude that BH at short wavelengths is robust over a large range in peak 

intensities. 

 4.2.4 Conclusion 
To summarize, by simulating the R-dependent QB power spectra we investigated the 

nuclear dynamics of the D2
+ molecules in a short laser field for different peak intensities, 

wavelengths, and pedestal lengths. We focused on dissociation by BS and BH while analyzing 

the power spectra in terms of field-dressed Floquet potential curves. We confirmed that the 

Floquet picture is appropriate for characterizing the main features of the nuclear dynamics in 

few-cycle laser pulses despite its inherent CW assumption, except for the longest wavelengths 

used in our simulations (1600 nm). Our simulations suggest that pulses with a wavelength 

between 200 to 300 nm, a peak intensity of about 1014 W/cm2, and a duration of less than 50 fs 

(FWHM) are well suited for the observation of transient vibrational trapping of the molecular 

motion in the 1-ω BH well. At wavelengths of 1600 nm, we found that dissociation proceeds via 

both 1-ω and 3-ω BS. For the same wavelength, our simulations indicate transient trapping in the 

3-ω BH well. To the best of our knowledge, our theoretical findings can be tested experimentally 

considering existing technology [Alnaser05]. 
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4.3 Dissociation dynamics of D2
+ in strong laser fields 

In this sub-chapter, starting with the simple diatomic molecule D2, we investigate 

dissociation dynamics of diatomic molecules in intense laser fields, test the FT method described 

in Chapter 3, and compare the calculations with the measured data [Rudenko-07]. In the case of 

D2, electronic states potentially involved in the dynamics are not so hard to identify, since there 

are two main states of D2
+, bound 1sσg (the only bound state of D2

+), and repulsive 2pσu. These 

states are widely available from the literature, but we have done ab inito calculations using 

GAMESS code. 

 

Figure 4.7 (a) Potential curves of H2 and H2
+ calculated using MCSCF/cc-pVTZ method with 

GAMESS. (b)  Dipole couplings. For R>4 the dipole couplings are approaching R/2 limit. 
 

4.3.1 Potential curve calculations 
Potential curves and dipole couplings were calculated with the MCSCF/cc-pVTZ method 

(Details of the method used in the calculations can be found in Chapter 3 and Appendix E). We 

optimized the molecular geometry of neutral (equilibrium internuclear distance 1.35) and singly 

charged (equilibrium internuclear distance 2) deuterium molecules using restricted open-shell 

SCF wavefunctions. Calculations were done for different fixed internuclear separations with 

steps of 0.05Å. The ground state of H2 (D2) has the configuration (1σg)2. In the calculations, both 

of the molecular orbitals 1σg and 1σu were allowed to vary. The electronic state 1sσg (X2Σg
+) has 

the configuration (1σg)1(1σu)0 and the state 2pσu (A2Σu
+) has the configuration (1σg)0(1σu)1. 
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The calculated D2 and D2
+ curves and dipole couplings are shown in Fig. 4.7. The 

calculated curves are in excellent agreement with the “known” results based on the solution of 

time independent Schrödinger equation discussed in Chapter 2 [Thumm-08]. The minimum of 

the ground state of H2 (H2
+) is at around 1.35 (2.0), and the dipole couplings approach the R/2 

limit at large R. 

 

4.3.2 Experiment and theoretical model 
The experiment was done using cold target recoil ion momentum spectroscopy 

(COLTRIMS, also known as a reaction microscopy) with a pump-probe scheme to map the H2
+ 

nuclear wave packets by three-dimensional CE imaging in intense laser pulses [Rudenko-07]. 

The laser parameters were 800 nm wavelength, ~ 10fs FWHM pulse width, and 3×1014 W/cm2 

intensity. In the pump-probe process a pump pulse singly ionized the molecule, and a probe 

pulse could photo-dissociate the molecular ion, or ionize it further and Coulomb-explode. 

In this particular study we were interested in the photo-dissociation process. The 

measured proton energy as a function of pump-probe delay was compared to the measured 

spectra (see the next section). In our theoretical model we solve the two-state TDSE as described 

in Chapter 3, and using the FT method we plot proton energy as a function of delay. We used 10 

fs FWHM pulses with an intensity of 3×1014 W/cm2. 

 

4.3.3 Results 
The measured energy spectrum for the photo-dissociation process is compared with the 

calculations in Fig. 4.8. The revival time of ~580 fs is reproduced in the calculations, with the 

wave packet oscillation period ~20 fs (in the 1sσg state). Even a fractional revival is visible at 

around 290 fs. 

The dissociative line coming down from energies around 4 eV and merging with the dissociative 

energy limit below 1 eV is not relevant. This path comes from so-called “delayed dissociation” 

[Rudenko-07], that is, dissociative ionization first by the pump and then ionization of the bound 

part of the wave packet by the probe (not included in the simulation). 
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Figure 4.8 (a) Measured [Rudenko-07] and (b) calculated proton energy for the process of 
dissociation of D2

+ → D+ + D (logarithmic color scale).  The pulse parameters are 10 fs width 
and 3x1014 W/cm2 intensity. 
 

4.3.4 Conclusions 
The main features of the measured energy spectra, such as the oscillation period and 

revivals, are reproduced in the calculation. Our FT method works for small diatomic molecules. 

The next step is to try heavier molecules (Chapters 5 and 6). 

 

 4.4 Electron localization 
In this sub-chapter the localization of the electron in an IR field is discussed [Wu-13-3]. 

In the previous experiments the asymmetry of the pulses was achieved either by CEP 

stabilizing a few-cycle pulse [Kling-06, Kremer-09, Znakovskaya-12, Kling-13] or by 

composing a pulse of two different carrier frequencies [Ray-09, Wu-13-1]. The asymmetric 

fields drive and eventually localize the bound electron at one of the dissociating nuclei [He-08-1, 

He-12]. Alternatively, an attosecond pulse [He-08-2, Sansone-10, Singh-10] has been used to 

first launch a H2
+ vibrational wave packet by single-photon ionization of H2.  Next, a phase-

locked near-infrared laser pulse drives the remaining electron back and forth between the nuclei 

until its final localization at one of them, governed by the relative time delay between the 

excitation and the driving pulses.   
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Figure 4.9 Schematic of an ultrafast stopwatch. The times tstart and tstop indicate the start and 
stop times of the stopwatch that are retrieved by coincident detection of the emitted electron 
and ion from a breaking chemical bond of H2

+. Electrons are indicated as blue “bubbles” and 
nuclei are shown as red dots. In the bottom panel, the laser field that drives an electron up and 
down during the breaking of the chemical bond is shown as a red curve with start and stop 
times indicated by lines. (Figure by Jian Wu with POV-Ray for Windows). 
 

This section of the chapter focuses on answering a question - do symmetric long laser 

pulses preserve symmetry in breaking chemical bonds? To answer the question, experiments 

were done in Frankfurt, Germany using a two-particle-coincidence technique achieving 

attosecond time resolution in a long circularly polarized multicycle femtosecond laser pulse. This 

allowed the time resolution of the laser-driven ionization and fragmentation of H2 by relating the 

instant of ionization of H2 to the ejected electron direction and by subsequently breaking the H2
+ 

bond in the same pulse. This approach provides an ultrafast stopwatch using the jointly measured 

directions of two emitted particles as hands (Fig. 4.9). In its basic implementation used here, the 

technique is extremely robust and easy to use as it is independent of the carrier-envelope phase 

[Kling-06, Kremer-09, Znakovskaya-12] and pulse length and does not require attosecond pulses 

[Hentschel-01, Sansone-06, Goulielmakis-04, Drescher-02, Cavalieri-07, Gräfe-08]. It is scalable 

to more than two particles as each electron carries its individual time stamp [Pfeiffer-11] and can 

be encoded by using different polarizations. This technique allows the measurement of time 
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intervals based on the momentum differences which can be detected with extremely high 

precision, even for long pulses, thereby providing a powerful tool for ultrafast science.  

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 4.10 (a) Schematics of coincidence detection of the electron and ion for a circularly 
polarized laser field (red spiral). At time tpump the electron is emitted due to the pump pulse and 
detected at one of the detectors (green circle) with angle  φe, and the ions are detected 
coincidently with angle φi on the other detector (orange circle) at  probe time tprobe. (b) 
Dissociation dynamics of the singly ionized H2

+. The inset shows the calculated forced left-
and-right motion of the nuclear wave packet by the laser field (red curve) which finally 
localizes at one of the nuclei during the dissociation of H2

+ with increased internuclear 
distance. (Figures by Jian Wu). 

 

4.4.1 Experiment 
In the experiment the particles emitted from the same molecule are detected in 

coincidence (Fig. 4.9). As displayed in Fig. 4.10(a), we use the rotating electric field vector of a 
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circularly polarized long laser pulse as ultrafast clockwork and the coincidence detection of the 

two particles which are both driven by this clockwork as two hands marking the start and stop of 

the clock. We then read the time elapsed between start and stop as the angle between the detected 

particle momenta. This coincident angular streaking technique is used to probe the attosecond 

dynamics of an electron in a breaking chemical bond of H2
+ as shown in Fig. 4.9. By realizing 

both the pump and probe step in a single near-infrared multicycle circularly polarized pulse (Fig. 

4.10(a)), we clearly observe the asymmetric release of the proton by simultaneously tracking the 

electron localization as a function of the moment of ionization and the proton kinetic energy.   

Figure 4.10a illustrates the coincidence detection measurement: at time tpump the nuclear 

vibrational wave packet is launched by the first part of the laser pulse (acting as the pump) 

releasing one electron from the neutral molecule at the same time. After the ionization the 

remaining electron is driven by the second part of the same laser pulse (acting like a probe) until 

its final localization at time tprobe. A vibrational nuclear wave packet is created by the pump on 

the 1sσg
+ potential curve of H2

+ at time ti as marked in Fig. 4.10(b). The wave packet is coupled 

to the repulsive 2pσu
+ state at a later time tc and eventually dissociates into H++H. Due to the 

coherent superposition of 1sσg
+ and 2pσu

+ contributions, the nuclear probability density is then 

localized (asymmetrically) at the nuclei. The electron localization dynamics is governed by the 

laser phases at the instants of field ionization (ti) and at the couplings (tc,3ω and tc,1ω). The angle 

of the final momentum of the released electron φe provides the laser phase at the ionization 

instant ti [Eckle-08-1, Eckle-08-2, Pfeiffer-12, Holmegarrd-10, Wu-12]. In a long pulse and 

without coincidence detection, the information on the instantaneous field direction is physically 

meaningless. For an analog clock this would correspond to having one hand of the clock, but 

lacking an oriented clock face. In our case the orientation of the clock face is given by the 

dissociation direction φi of the proton measured in coincidence, which is determined by the laser 

phases at the field-coupling instants tc,3ω and tc,1ω. The angle difference between the electron and 

proton momentum vectors (or the electron angle in the molecular frame), φe
mol = φe - φi, is 

equivalent to the time delay in a traditional pump-probe scheme.  

A COLTRIMS [Ullrich-03] reaction microscope was used to measure in coincidence the 

directions and energies of the ion and electron produced by 35 fs (~13.3 cycle at 790-nm) 

circularly polarized laser pulses. The experiments were performed with femtosecond laser pulses 

(35 fs, 790 nm, 8 kHz) produced from a multipass amplifier Ti:sapphire laser system (KMLabs 
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Dragon). The laser pulses were sent into a standard COLTRIMS setup [Ullrich-03] and focused 

by a concave reflection mirror with a focal length of 7.5 cm onto a supersonic gas jet. The jet 

was a mixture of H2 and D2 with a ratio of 1:1, so that both targets could be probed under 

identical conditions. The ions and electrons created by the laser were accelerated by a static 

electric field (~14.7 V/cm) and detected by two time and position sensitive micro channel plate 

detectors28 at opposite sides of the spectrometer. A weak homogeneous magnetic field (~9.2 

Gauss) was used to enable the detection of the electrons within a 4π solid angle. The three-

dimensional momentum vectors of the correlated ions and electrons were retrieved from the 

measured time-of-flight and position information during the offline analysis. The polarization of 

the laser pulse was changed from linear to circular by using a quarter waveplate with its fast-axis 

orientated at 45° with respect to the input linear polarization. The handedness of the circular 

polarization could be switched from anticlockwise to clockwise by rotating the fast-axis of the 

quarter waveplate by 90°.  

 

4.4.2 Methods 
In this subsection two different models - semiclasical and quantum mechanical - are 

discussed for a quantitative insight into the observed localization mechanism. Note that 

dissociation is considered along the direction of the molecular axis, and only the component of 

the laser field along this axis is used in our simulations. 

 

4.4.2.1 Semiclassical model 

In a semi-classical approach, we model the classical motion of the nuclei on the potential 

curves of H2
+ keeping track of the quantum phases. As illustrated in Fig. 4.10(b), we start the 

nuclear motion on the 1sσg
+ potential surface at time ti and consider dissociation along two 

possible pathways: the 1ω (violet curve) or the net-2ω pathway (pink curve).  

We propagate the nuclear wave packet as a classical particle with reduced mass on the 

potential curves of H2
+. Its motion follows Newton’s laws and is driven by the force F=-∂U/∂R 

[Bocharova-11]. As illustrated in Fig. 4.10(b), the classical nuclear motion in the molecular ion 

is initiated at the equilibrium distance of the neutral molecule (R0~1.4 a.u.) at time ti with an 

initial energy of E0=Ug0+Ek0 given by the sum of the potential and kinetic energy. An initial 

kinetic energy (stemming from the finite width of the original wave packet in momentum space) 
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is given to the particle so that it can reach the one-photon or three-photon energy gap and thus 

can be laser coupled to the repulsive state. As illustrated in Fig. 4.10(b), the two possible 

dissociation pathways are: the 1ω pathway (violet curve; propagation on the 1sσg
+, followed by 

coupling to the 2pσu
+ curve at time tc,1ω by absorption of one laser photon, followed by 

dissociation along the 2pσu curve) or the net-2ω pathway (pink curve; propagation on the 1sσg
+, 

followed by coupling to the 2pσu
+ curve at time tc,3ω by absorption of  three photons, followed by 

propagation on the 2pσu
+ curve and coupling back to the1sσg

+ curve by emitting one photon at 

time tc,1ω, followed by dissociation along the 1sσg
+ curve). For the 1ω and net-2ω dissociation 

pathways, the accumulated phase of the wave packet during the dissociation from R0 to Rf  (Rf > 

100 a.u.) can be approximated as 

 𝜑1𝜔 = (𝐸0,1𝜔 + 𝜔0)�𝑡𝑐,1𝜔 − 𝑡𝑖� + 𝜑𝑔𝑢 + �𝐸0,1𝜔 + 𝜔0��𝑡𝑓 − 𝑡𝑐,1𝜔� − ∫ 𝑝1𝜔(𝑅)𝑑𝑅𝑅𝑓
𝑅0

     (4.1) 

𝜑𝑛𝑒𝑡−2𝜔 = (𝐸0,𝑛𝑒𝑡−2𝜔 + 3𝜔0)�𝑡𝑐,3𝜔 − 𝑡𝑖� + 𝜑𝑔𝑢 + �𝐸0,𝑛𝑒𝑡−2𝜔 + 3𝜔0��𝑡𝑐,1𝜔 − 𝑡𝑐,3𝜔� −

𝜔0�𝑡𝑐,1𝜔 − 𝑡𝑖� − 𝜑𝑔𝑢 + �𝐸0,𝑛𝑒𝑡−2𝜔 + 2𝜔0��𝑡𝑓 − 𝑡𝑐,1𝜔� − ∫ 𝑝𝑛𝑒𝑡−2𝜔(𝑅)𝑑𝑅𝑅𝑓
𝑅0

                       (4.2) 

where ϕgu=π is the phase change due to coupling of the gerade state to the ungerade state and 

p...(R) is the momentum of the wave packet. The probabilities for electron localization on the left 

or right nucleus are 

𝑃𝑙 = |𝜓𝑙|2 = 1
2

|𝜓1𝜔 + 𝜓𝑛𝑒𝑡−2𝜔|2                                           (4.3) 

𝑃𝑟 = |𝜓𝑟|2 = 1
2

|𝜓1𝜔 − 𝜓𝑛𝑒𝑡−2𝜔|2.                                          (4.4) 

By assuming|𝜓1𝜔| = |𝜓𝑛𝑒𝑡−2𝜔|, the asymmetry parameter within this semiclassical model is  

𝛽𝑐 = 𝑃𝑙−𝑃𝑟
𝑃𝑙+𝑃𝑟

= cos(𝜑1𝜔 − 𝜑𝑛𝑒𝑡−2𝜔) = cos (Δ𝜑)   .                   (4.5) 

Therefore, the asymmetrical electron localization due to interference between dissociating wave 

packets on the 1ω and net-2ω pathways is governed by the phase difference between them.   

 

4.4.2.2 Quantum model 

In our second two-state quantum mechanical model, we numerically solved the one-

dimensional TDSE for the vibrational nuclear wave packet [Thumm-08]. The quantum dynamics 

of the nuclear wave packet is modeled by solving the TDSE in the subspace of the gerade (1sσg
+) 

and ungerade (2pσu
+) electronic states of H2

+ [Thumm-08]. Since mainly the laser polarization 

component parallel to the molecular axis influences the electron localization dynamics [Kling-
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06, Kremer-09, Znakovskaya-12, Ray-09, He-08-1, He-08-2, Sansone-10, Singh-10], a 

simplified one-dimensional model is sufficient to reproduce the observed asymmetry in our 

experiment. The initial vibrational nuclear wave packet in H2
+ is modeled based on molecular 

Ammosov-Delone-Krainov (ADK) rates for the depletion of the neutral hydrogen molecules as 

described in references [Niederhausen-08, Brichta-06]. In brief, the molecular ADK rate, which 

depends on the internuclear distance and instantaneous laser intensity, is integrated over time, 

divided by two, and exponentiated in order to provide the R-dependent neutral-molecule-

depletion factor d. The initial wave packet in H2
+ is then obtained by multiplying the vibrational 

(and electronic) ground state wavefunction of the neutral molecule by (1-d) followed by 

normalization of this product. The launch time defines the detected electron angle φe and 

corresponds to the instantaneous ionization by the attosecond pulse in the two-color pump-probe 

experiment [He-08-2, Sansone-10, Singh-10]. After the wave packet is launched, the remainder 

of the laser pulse is used to drive its motion. We assume the ionization occurs mainly in the 

seven most intense laser cycles around the pulse peak. The wave packets launched during 

different laser cycles for the same laser phase (modulo 2π) are coherently added at the end of the 

propagation from the gerade (ψnet-2ω) or ungerade (ψ1ω) potential curves, respectively. The 

probability for finding the electron localized on the left or right nucleus is calculated similar to 

the semiclassical model. Here, in order to determine the kinetic energy spectrum of the ion, we 

Fourier transform the dissociating parts of the nuclear wave packets to obtain the momentum 

representations Pω,l and Pω,r and calculate the asymmetry parameter as                  

𝛽𝑞 = 𝑃𝜔,𝑙−𝑃𝜔,𝑟

𝑃𝜔,𝑙+𝑃𝜔,𝑟
.                                                         (4.6) 

The peak laser intensity in the simulation, adjusted to obtain the best agreement of the kinetic 

energy spectra, is Ι0=7.0×1013 W/cm2. It is lower than to the peak intensity in the experiment for 

the linear component along the molecular axis, which is 1.2×1014 W/cm2. (We divided the peak 

intensity for the circularly polarized pulse by 2 to take into account the circular polarization). By 

using a lower peak intensity in the quantum simulation, we effectively average over the laser 

intensity profile in the experiment (focal-volume effect). 
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Figure 4.11 Localization of the electron in the dissociation process of singly ionized H2. (a) 
Semi-classically calculated asymmetry parameter βc as a function of the laser phase ω0ti and 
H+ kinetic energy. (b) Quantum-mechanically calculated asymmetry parameter βq. (c) 
Measured electron localization βm in dissociative single ionization of H2 as a function of the 
emission angle φe

mol of the correlated electron in the molecular frame and the H+ kinetic 
energy.  
 

4.4.3 Results  

Figure 4.11a displays the semiclassically calculated asymmetry parameter βc as a 

function of the laser phase at ionization instant ti and the final kinetic energy Ek, in good 

agreement with our measured asymmetry βm for Ek > 0.6 eV. The final kinetic energy from the 

1ω and net-2ω pathways are Ek,1ω = E0,1ω +ω0 and Ek,net-2ω = E0,net-2ω +2ω0, respectively. 
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Interference between the dissociating wave packets requires equal final kinetic energy, i.e., Ek,1ω 

=Ek,net-2ω.  

This requirement and the applied initial kinetic energy give the lower limit of the final KER in 

the classical calculation. To compare with the emission angles of the electron for circular 

polarization, the absolute phase of the laser is shifted by 90° in the simulation. This accounts for 

the 90° rotation of the electron angle due to the angular streaking. Figure 4.11b depicts the 

results from the quantum calculation, which agrees well with the experiments (Fig. 4.11(c)) for 

the whole observed kinetic energy range. This confirms that our measured asymmetry is indeed 

predominantly due to the interference between the 1ω and net-2ω dissociating wave packets.   

 

 

4.4.4 Summary 
Our findings are in contrast to the general belief that electron localization cannot be 

measured in symmetric laser fields, such as our multicycle laser pulse composed of a single 

carrier frequency. Our data show that electron localization is not something which has to be 

artificially enforced by optical means as done so far [He-08-1, He-08-2, Kling-06, Kremer-09, 

Ray-09, Sansone-10, Singh-10, Znakovskaya-12], but that it occurs naturally, even in pulses 

which are perfectly symmetric. This ubiquitous localization is, however, hidden to all techniques 

which detect only one particle, thus integrating over all time delays. Our coincidence technique 

in contrast looks into the electron dynamics with attosecond resolution and shows the underlying 

dynamics in a very transparent and general way.  

The technique to measure time spans by coincidence detection using the rotating electric 

field vector of circular or elliptical laser light as a clock is highly versatile. The key advantage as 

compared to techniques detecting only one particle from a sequence of events is that the time 

resolution is not limited by the width of the pulse as demonstrated in the present work. 

Coincidence techniques allow the measurement of time intervals based on the differences in 

momenta (in either magnitude or direction) which can be detected with extremely high precision, 

even for long pulses, thereby providing a powerful tool for ultrafast science.  
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Chapter 5 - OXYGEN MOLECULES IN IR LASER FIELDS 
In this chapter the dissociation dynamics of  O2

+ molecular ions in IR fields is summarized. 

 5.1 Introduction 
Significant advances in femtosecond laser technology have made it possible to control 

and analyze the nuclear dynamics in small diatomic molecules [Zewail-88, Niikura-06, 

Posthumus-04]. In particular, the nuclear dynamics in H2 and D2 molecular ions have been 

studied by analyzing the measured (or calculated) KER spectra of the fragments produced by 

ultra-short IR pulses with a carrier wavelength of 800 nm and pulse lengths between 7 fs and 20 

fs [Bocharova-11, De-11]. In comparison with heavier molecules, the vibrational nuclear motion 

in H2
+ (and its isotopes) is simple as it primarily involves the two lowest adiabatic potential 

curves of the molecular ion. For H2
+, the dissociative wave packet emerges mainly on the 

repulsive |2pσu > state, while a bound oscillating part of the wave packet may remain in the 

electronic ground state |1sσg > (see Chapter. 4). The extension of these investigations to heavier 

molecules is not straightforward, and the interpretation of experimental data is intricate due to 

the large number of molecular potential curves involved. By analyzing KER spectra from 

dissociated oxygen ions as a function of the time delay, we found that several intermediate 

electronic states of the molecular ion usually contribute to the same KER [Bocharova-11, De-10, 

De-11]. In references [Bocharova-11] and [De-11], we studied the dynamics of N2, O2, and CO 

molecules in intense laser pulses using the CE imaging technique. In comparison with classical 

and quantum mechanical simulations, we identified transiently populated intermediate states for 

molecular ions in different charge states and associated dissociation pathways. The occurrence of 

vibrational revivals in measured KER spectra was scrutinized in reference [De-10] and allowed 

the identification of relevant molecular potential curves.  

In this chapter we present a method for identifying the relevant electronic states involved 

in the dynamics of the O2 molecule. First we employ the General Atomic and Molecular 

Electronic Structure System (GAMESS) quantum chemistry code [Gordon-05] to calculate 

potential curves and dipole coupling strengths between adiabatic potential curves using the 

multi-configuration (MC) self-consistent field (SCF) method with a correlation consistent (cc) 

polarized triple-ξ (pVTZ) basis set (MCSCF/cc-pVTZ) [Schmidt-98, Cramer-04]. Next, in Sec 

5.3, we numerically solve the TDSE for the evolution of a given initial vibrational wave packet 

in the molecular ion on a given BO potential curve. In our quantum mechanical calculations, we 
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neglect molecular rotation and model the initial state of the molecular ion by assuming 

instantaneous ionization of the neutral parent molecule in the pump pulse based on the Franck-

Condon approximation [Bransden-03]. Our calculations provide KER spectra as a function of the 

pump-probe delay that reveal the vibrational period and revival times of binding molecular 

potential curves. The vibrational period and revival times in a given electronic state serve as a 

first criterion for selecting relevant potential curves. This selection process starts by comparing 

simulated KER spectra that were obtained in separate calculations under the assumption that the 

nuclear motion in the molecular ion proceeds on a single electronic potential curve with 

measured KER spectra [De-11]. This comparison involves the scrutiny of simulated and 

measured KER spectra as a function of time and frequency. For this purpose we derive 

internuclear-distance (R)-dependent power spectra [Thumm-08, Magrakvelidze-09, Winter-10, 

Feuerstein-07, Niederhausen-08] by Fourier transformation of the calculated time-dependent 

nuclear probability density. The power spectra allow us to identify vibrational QB frequencies 

associated with the bound motion of the vibrationally excited molecular ion. This enables us to 

further scrutinize the relevance of any given binding electronic state of the molecular ion by 

comparing revival times [Robinett-04], oscillation periods, and QB frequencies with measured 

values.  

After comparing separate calculations performed for individual BO molecular potential 

curves with measured KER spectra, we select a small set (in this work two) of curves that agree 

best with the measured data. In a final separate calculation, we then investigate the dissociative 

dynamics of the molecule, including dipole couplings between the selected electronic states of 

the molecular ion in the electric field of the probe-laser pulse (Sec.5.3.2). As an example we 

present numerical results for the dissociation of O2
+ molecules. In Sec. 5.3.3 we compare two 

alternative methods for deriving KER spectra in nuclear wave-function-propagation calculations. 

The effect of an added long-probe pedestal is investigated in Sec. 5.3.4. Section 5.4 compares 

measured KER spectra for O2
+ ions [De-11] with simulated spectra for dipole-coupled potential 

curves [Magrakvelidze-12-1]. A brief summary and our conclusions follow in Sec. 5.5.  

 

 5.2 Potential curve and dipole coupling calculations 
For our calculations we used the MCSCF method (See Chapter 2), where a linear 

combination of configuration state functions (CSF), i.e. Slater determinants of MOs, are 
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employed to approximate the exact electronic wavefunction of a system. This is an improvement 

over the HF method where only one determinant is used. By variation of the set of coefficients in 

the MCSCF expansion in addition to the simultaneous variation of MO coefficients in the basis 

set expansion, the total electronic wavefunction for a given BO channel is obtained with the 

lowest possible energy for a given set of occupied and active orbitals [Hartree-28, Roothaan-51] 

(See Appendix E for input and output examples). 

 

5.2.1 Gaussian basis set 
In our calculations we choose AOs that are modeled as Gaussian functions centered at 

each nucleus of the diatomic molecule (or molecular ion). These AO orbitals are linearly 

combined to form MOs with a set of expansion coefficients {ai}. The MOs are multiplied with 

electron spin orbitals and combined to make Slater determinants in order to satisfy the Pauli 

Exclusion Principle. The CSF wavefunctions are equivalent to these Slater determinants and are 

linearly combined to create the MC wavefunction with coefficients {Ak}. The expansion 

coefficients {ai} and {Ak} are determined simultaneously based on a variational principle 

[Bransden-03].  

For the accuracy of the calculated potential curves, it is very important to choose 

appropriate basis functions. The basis set is the set of (mathematical) functions (for example 

Gaussians) from which the wavefunction is constructed. Since HF and MCSCF methods are 

variational, larger basis sets tend to produce more accurate results. The basis set with two 

Gaussians on each AO is called a double-ξ basis. The higher the number of Gaussians used for 

each AO the more complete the basis is (multiple-ξ basis set). We used the Dunning-type 

correlation-consistent polarized valence triple-ξ basis set (cc-pVTZ) [Dunning-89]. The 

“Dunning-type basis set” is an example of a multiple-ξ basis set. The “correlation-consistent” 

part of the name indicates that the basis set was optimized for calculations including electron 

correlation through excited CSFs. 

 

5.2.2 Configuration state function 
We calculated potential curves and dipole-coupling strengths between adiabatic potential 

curves using the MCSCF/cc-pVTZ method. The MCSCF wavefunctions were optimized with the 

[(1σg)2(1σu)2(2σg)2(2σu)2] “frozen core”, meaning that the occupations of those MOs were not 
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allowed to vary. The calculations were done for fixed internuclear separations R with steps of 

0.02 Å. Dipole-coupling matrix elements for different Rs were calculated including configuration 

interaction within the graphical unitary group approach (GUGA) [Gould-90]. 

The ground state of the oxygen molecule has the configuration [(1σg)2(1σu)2(2σg)2 

(2σu)2](3σg)2(1πu)4(1πg)2. A large number of final molecular ion states with different 

multiplicities and symmetries can be generated after valence photoionization. Those states are 

given in Table 5.1. The table shows the main configurations that contribute more than 70% to the 

norm of the MCSCF wavefunction. GAMESS outputs only designate electronic configurations. 

To link the calculated potential curves and dipole-coupling matrix elements to a given MCSCF 

state, we used Table 5-1. 

Table 5.1. The electronic configurations of the calculated states of O2
+.  

 

State 
Main electronic configuration 

1σg 1σu 2σg 2σu 3σg 1πu 1πg 3σu 
X2Пg 2 2 2 2 2 4 1 0 
a4Пu 2 2 2 2 2 3 2 0 
A2Пu 2 2 2 2 2 3 2 0 
4Σg

+ 2 2 2 2 2 3 1 1 
f 4Пg 2 2 2 2 2 2 3 0 

 
 

The MCSCF process minimizes energy using the variational principle. “Root switching” 

can be a problem if two states are close in energy and MO and CSF coefficients are only 

optimized for one MCSCF state. To avoid this problem, we carried out state-averaged MCSCF 

calculations [Diffenderfert-82], where MO orbitals are optimized not for any one state energy Ej 

(which is usually the ground state), but for the average of two or more states 𝐸� = ∑ 𝑤𝑗𝐸𝑗𝑁
𝑗 , 

where N is the number of states (in our case 14) included in the average, and the coefficients wj 

are positive constants with normalization ∑ 𝑤𝑗𝑗 = 1. The MCSCF wavefunctions are optimized 

to minimize the energies Ej. The number of MOs used in the variation space was 60; the number 

of the Cartesian Gaussian basis functions (atomic orbitals) used was 70. In MCSCF calculations, 

the specification of how many MO are occupied is crucial. One needs to specify the so-called 

“active” space. We use the notation- “(m, n)” where m is the number of active electrons and n is 

the number of orbitals (Chapter 2). As an active space we used MCSCF (7, 6) for O2
+. The six 

orbitals are the σ, π, σ*, and π* orbitals of O2. 
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5.2.3 Geometry optimization 
When performing computations it is important to understand the geometry of the 

molecule, since many of the physical and chemical properties of the molecule depend on it. We 

optimized the molecular geometry of neutral (equilibrium internuclear distance 1.152Å) and 

singly-charged (equilibrium internuclear distance 1.087Å) oxygen molecules using restricted 

open-shell SCF wavefunctions, where the occupation of closed shells by the electrons are 

assumed to be fixed, with the wavefunctions represented as a single Slater determinant. 

“Restricted” indicates that the spin-up and spin-down orbital coefficients in the expansion and 

energies are the same. The symmetry used was D4h for the linear molecule with inversion center 

[Cotton-90], since the full D∞h point group is not supported in GAMESS. 

 
 

5.2.4 Results 
Four of the calculated electronic states for the O2

+ molecular ion are shown in Fig. 5.1. 

For selected states (a4Πu and f 4Πg states), we compared data from the literature [Marian-82] with 

our MCSCF/cc-pVTZ results and found good agreement for both adiabatic potential curves and 

electric dipole transition matrix elements Dij between two adiabatic electronic states that 

correspond to potential curves Vi(R) and Vj(R), where indices i and j label electronic states. As an 

example, our calculated potential curves for the a4Πu and f 4Πg states of O2
+ and their dipole-

coupling matrix elements are compared to results in [Marian-82] in Figs. 5.2 (a) and (b) 

respectively. In Marian et al. [Marian-82], a multi-reference double-excitation configuration 

interaction (MRD-CI) treatment [Buenker-83] and a double-ξ basis set were used in the 

calculation (MRD-CI/DZP). MRD-CI includes electron correlation from excited determinants in 

addition to correlation within the active space. To make sure that our MCSCF/cc-pVTZ method 

was sufficient compared to calculations that better represent electron correlation, we performed 

full second-order CI calculations (FSOCI) for the a4Πu state at four different internuclear 

distances. FSOCI calculations are similar to MRD-CI but include single and double excitations, 

while MRD-CI includes only double excitations. Blue dots in Fig. 5.2 (a) indicate results from 

FSOCI/cc-pVTZ calculations which are in good agreement (within 0.7%) with our MCSCF 

calculations (red line in Fig. 5.2 (a)). The computational time for FSOCI calculations is 3 orders 

of magnitude larger than for MCSCF calculations. Since the calculated values from both 
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methods are similar, we used the numerically less expensive method (MC-SCF) for obtaining 

electronic states and dipole-coupling matrix elements. Using a larger cc-pVTZ basis set than the 

basis used in [Marian-82], we can be confident that our calculated results are at least as accurate 

with regard to the complete basis set limit. 

 

 
 
 
Figure 5.1 Calculated potential energies 
for the O2

+ molecule using the MCSCF/cc-
pVTZ method. The zero of the energy axis 
is taken as the ν = 0 level of the X3Σg

- 
ground state of O2.  
 

 

 

 

 

 

 

 

 

Figure 5.2 (a) Calculated potential 

energies and (b) dipole coupling elements 

from [Marian-82] using the MRD-

CI/DZD method in comparison with our 

MCSCF/cc-pVTZ application. Blue dots 

in (a) correspond to the FSOCI -cc-pVTZ 

method. 
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Figure 5.3 Schematics for the mapping of the nuclear dynamics in oxygen molecular ions. 
The pump-laser pulse launches a nuclear wave packet onto the O2

+ potential curves (a4Пu and 
f 4Пg) by ionizing O2. After a variable time delay, an intense short probe pulse can cause the 
dissociation of the molecular ion through one or net two photon processes. 
 

5.3 Nuclear dynamics 

5.3.1 Free nuclear motion in a single electronic state (single-cation-curve calculations) 
The dynamics of the nuclear vibrational wave packet can be reconstructed from the KER 

spectra obtained for a sequence of pump-probe delays τ. This is shown schematically in Fig. 5.3 

for the a4Пu and f 4Пg states where a pump pulse singly ionizes an oxygen molecule. In general, 

the pump pulse can ionize oxygen molecules to any state of O2
+, for example the X2Πu and b4Σg

- 

states, but as our calculations show, several characteristic parameters, such as the oscillation 

period, revival time, and QB frequency for the a4Пu state match the experimental data best. The 

probe pulse is assumed to be linearly polarized along the molecular axis throughout this work. 

The excited oxygen molecule can dissociate through a one-photon or net two-photon process. In 

order to reveal relevant intermediate electronic states of the molecular ion, we compared the 

oscillation period and revival times of the bound motion of the wave packet in a given electronic 

state with measured values. We also checked whether transitions between these states are dipole 

allowed and calculated the strength of their dipole coupling in the electric field. 

To identify which of the states are main contributors to the dynamics, we allow the wave 

packet to freely propagate separately on individual adiabatic potential curves Vi(R) of the 
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molecular ion. We assume the propagation times to be short enough to neglect the rotation of the 

molecule and solve the 1-D TDSE 

                                                           𝑖 𝑑
𝑑𝑡

 𝛹𝑖 = [𝑇𝑅+ 𝑉𝑖(𝑅) ] 𝛹𝑖    (5.1) 

where TR= -(M -1)∂2/∂R2 is the kinetic energy operator of the nucleus with mass M, Vi are the 

electronic states.  

Starting with a neutral O2 molecule in the ground state, we model the creation of the O2
+ 

vibrational wave packet by the pump pulse in the FC approximation [Bransden-03, Thumm-08, 

Magrakvelidze-09]. We solve (5.1) for the initial wave packet 

 

Ψ𝑖(𝑅, 𝑡 = 0) = ∑ 𝑎𝑖,𝜈ν φ𝑖,ν(R)      (5.2) 

that is expressed in terms of the FC amplitudes aiν. The index ν corresponds to vibrational states 

φi,υ in the i’th bonding adiabatic electronic state of the molecular ion with vibrational energy ωi,υ. 

We usually assume real amplitudes {aiν}. 

After calculating the spectrum {ωi,υ} by either diagonalization of the single-curve 

Hamiltonian TR + Vi(R) or by numerical wave-packet propagation of (5.1) subject to the initial 

condition (5.2), we obtain the field-free evolution of (5.2)  

Ψ𝑖(𝑅, 𝑡) = ∑ 𝑎𝑖,𝜈ν φ𝑖,ν(R)e−𝑖ωi,νt.                                      (5.3) 

Repeating single-curve calculations for several potential energy curves (we use one 

bound potential curve at a time), we aim at identifying relevant electronic states by comparing 

characteristics of the bound wave packet motion in Vi(R), such as vibrational periods Ti and full 

and partial revival times Trev,i [Robinett-04], with pump-probe-delay-dependent measured KER 

data [Bocharova-11, De-10, De-11, Zohrabi-11, Magrakvelidze-12-2,12-1].  

We obtain additional information for selecting electronic states that participate in the 

bound and dissociative nuclear motion of the molecular ion by comparing probability densities 

obtained from single-curve calculations with measured KER spectra as a function of the pump-

probe delay and QB frequency [Thumm-08, Magrakvelidze-09, Winter-10, Feuerstein-07, 

Niederhausen-08]. The comparison of probability density as a function of propagation time and 

QB frequency with measured KER spectra gives information about oscillation period and revival 

times of the bound motion of the wave packet in a given electronic state. By splitting the nuclear 

probability density 
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𝜌𝑖(𝑅, 𝑡) = |Ψ𝑖(R, t)|2 = 𝜌𝑖𝑖𝑛𝑐𝑜ℎ(𝑅) + ∑ 𝑎𝑖,𝜇∗𝜇≠𝜈 𝑎𝑖,𝜈𝑒−𝑖𝜔𝑖;𝜈,𝜇𝑡𝜑𝑖,𝜇∗ 𝜑𝑖,𝜈 (5.4) 

after getting rid of the incoherent part in equation (5.4) as discussed in Chapter 3, and Fourier 

transformation the coherent contribution over the finite sampling time T, we obtain power 

spectrum  

𝑊𝑖(𝑅,𝜔) = |𝜌і�(𝑅,𝜔;𝑇)|2   ,          (5.5)  

 The frequency resolution in ωi increases with T. Typically, sampling times of the order of a few 

picoseconds are required to clearly resolve vibrational QB frequencies in the power spectrum of 

heavy diatomic molecular ions. Examples for single-curve calculations are shown in Fig. 5.4 (a) 

and (b) for the A2Пu and in Fig. 5.4 (c) and (d) for the a4Пu states of O2
+. Comparison of the 

simulated vibrational periods, revival times, and QB frequencies for a number of electronic states 

with measured KER spectra reveals the a4Пu state as the best match to the experimental 

oscillation period and the beat frequencies. Table 5.2 shows a comparison of the calculated and 

measured parameters (oscillation period, revival time, and QB frequencies) for each potential 

curve we tried in our calculations. The best match to the measured ones is obtained for the state 

a4Пu. 

 
 
Figure 5.4 Single-curve calculations for the A 2Πu (a,b) and a 4Πu (c,d) states of O2

+. Nuclear 
probability densities (a,c) and corresponding power spectra (b,d). 
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Table 5.2 Comparison of calculated and measured revival times and QB frequencies for 

electronic states of O2
+.  

 Calculation Experimental values 

State 
Oscillation 
period (fs) 

Revivals 
(fs) 

(THz) QB 
frequency 

(ν=1 → v=2) 

Oscillation 
period (fs) 

First full 
Revivals 

(fs) 

(THz) QB 
frequency 

(ν=1 → v=2) 
X2Пg 17 670 58 

34 ~1200 30 a4Пu 33 1400 30 
A2Пu 36 1200 25 
b4Σg

- 29 900 35 
 

 

5.3.2 Nuclear dynamics on dipole-coupled electronic states 
After conducting single curve calculations for several potential curves of O2

+ and 

identifying the states by their oscillation periods, revival times and QB frequencies matching the 

measured values (a4Пu and A2Пu), we have carried out a full solution of the TDSE (Eq.9, see 

below) by including the combination of states a4Пu / f 4Пg, a4Пu / 4Σg
+, and A2Пu / 2Σg

+ in our 

two-state calculations in order to understand the dissociation channels (the best match to the 

measured KER corresponds to the a4Пu / f 4Пg process). 

Modeling the coherent motion of nuclear vibrational wave packets on several FC-

populated adiabatic potential curves of the diatomic molecular ion, we allow for dipole couplings 

of (coherently launched) nuclear wave packets Ψi(R,t) in the electric field of the probe laser pulse 

by numerically propagating the coupled TDSE with initial condition (5.2) [Thumm-08, 

Magrakvelidze-09, Winter-10, Feuerstein-07, Niederhausen-08]. 

 

i d
dt
�Ψ1Ψ2

� = �TR + V1 D12
D21 TR + V2

� �Ψ1Ψ2
�     .                            (5.6) 

Fourier transformation of the total nuclear probability density 

𝜌(𝑅, 𝑡) = ∑ 𝜌𝑖(𝑅, 𝑡)        𝑖 = 1,2𝑖                                                 (5.7) 

as discussed in Chapter 3.4 for the sampling time T leads to a power spectrum  

𝑊(𝑅,𝜔) = |𝜌�(𝑅,𝜔;𝑇)|2.                                        (5.8) 

In order to simulate KER spectra, we numerically propagate the coupled equations (5.6) 

for a sufficiently long time tmax, including field-free propagation of the nuclear wave packets for 
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typically ~800 fs after the action of the probe pulse (tprobe=10 fs). This allows us to separate the 

bound and dissociating parts of the nuclear motion in terms of the internuclear distance R, such 

that the probability current associated with the dissociation of the molecular ion has no relevant 

contributions for R >R1, whereas bound motion remains restricted to distances R<R1 (see Fig. 

5.5). Fourier transformation of the dissociating parts of the nuclear wave packets over the 

interval [R1,Rmax] (typically R1=4 and Rmax=330 in our calculations) then yields the momentum 

representation of the dissociating wave packets  

Ψ�𝑖𝑑𝑖𝑠𝑠(𝑃, 𝑡𝑚𝑎𝑥) = ∫ 𝑑𝑅Ψ𝑖𝑑𝑖𝑠𝑠(𝑅, 𝑡𝑚𝑎𝑥)𝑒−𝑖𝑃𝑅𝑅𝑚𝑎𝑥
𝑅1

 ,          (5.9) 

and the momentum representation of the total wave packet (after Fourier transforming the total 

wave packet Ψi(R,t)): 

Ψ�𝑖(𝑃, 𝑡𝑚𝑎𝑥) = ∫ 𝑑𝑅Ψ𝑖(𝑅, 𝑡𝑚𝑎𝑥)𝑒−𝑖𝑃𝑅𝑅𝑚𝑎𝑥
0  ,              (5.10) 

where Rmax (typically about 330 for converged results) is related to the size of the numerical grid. 

By incoherently adding the corresponding momentum distributions, we obtain the pump-probe-

delay (τ) - dependent distribution of fragment KERs as discussed in Chapter 3.7. 

 

Figure 5.5 (a) Probability density ρ(R; t) (Eq.5.4) for O2
+ at fixed pump-probe delay τ = 10 fs 

for the a4Πu - f 4Πg two-state calculation. The yellow dashed line corresponds to R1 = 4. The 
vibrational wave packet is considered purely dissociative and is propagated for 800 fs after the 
probe pulse. (b) Probability density as a function of internuclear distance R at t = 800 fs 
(logarithmic scale). 
 

Figure 5.5 shows the probability density (see equation (5.4)) as a function of propagation 

time and the internuclear distance at fixed pump-probe delay (τ = 10 fs) for a calculation with 

two coupled states, a4Πu and f 4Πg. In this calculation we assumed that initially only the a4Πu 
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state is populated, through a Franck-Condon transition from the ground state of O2. However, we 

found that the KER spectra do not change if initially both a4Πu and f 4Πg states are equally 

populated. The delayed probe-pulse dipole couples the initial wave packet motion with the f 4Πg 

state. As mentioned above, for the KER spectra calculations we took only the dissociative part of 

the wave packet into account. The horizontal yellow dashed line indicates the internuclear 

separation R1=4, beyond which the wave packet is considered as purely dissociative. Figure 5.5 

(b) shows the probability density on a logarithmic scale as a function of the internuclear distance 

800 fs after the pump pulse. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6 Calculated KER spectra for the dipole- coupled states a4Πu and f 4Πg as a function 
of pump-probe delay for (a) R1=3, (b) 4, (c) 4.5, and (d) 5 for a 10 fs, 3×1014 W/cm2 probe laser 
pulse. 

We investigated the effect of the parameter R1 on the KER spectra. The calculated KER, 

obtained using the FT method, as a function of pump-probe delay is given in Fig. 5.6 for 10 fs, 

3×1014 W/cm2 probe pulses, and for R1=3 (Fig. 5.6 (a)), R1=4 (Fig. 5.6 (b)), R1=4.5 (Fig. 5.6 (c)), 

and R1=5 (Fig. 5.6 (d)). From Fig. 5.5 (b) one can see that for all values R1>4.5 the KER spectra 

should give the same result. Indeed, the KER spectra shown in Fig. 5.6 (c) (R1=4.5) and (d) 

(R1=5) are almost the same. We found that simulations with R1 = 4 yield the best agreement with 

measured KER spectra (in Sec.5.4 below). 
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5.3.3 Comparison with the “virtual detector method” for simulating KER spectra 
In addition to the FT calculations, we also applied an alternative methods, the so-called 

“virtual detector” (VD) method, described in Chapter 3.8, for obtaining KER spectra [Feuerstein-

03]. This method allows the computation of fragment-momentum distributions without 

propagating the wave packet over a large numerical grid. In these VD calculations only, we used 

a grid length of Rmax = 40 with spacing ΔR = 0.01 (Fig. 5.7). The VD covers the R interval 

[RVD
min, RVD

max] = [6.5, 16.5]. The calculation was carried out for a total propagation time of 800 

fs with time steps of Δt = 1. Applying the VD method, we calculated the momentum expectation 

value of the fragments, p(ti), at each time step ti. We then combined fragment momenta that fall 

into small momentum bins in a histogram. From this histogram we obtained the KER spectrum 

(see [Feuerstein-03] for more details). The KER spectrum obtained with the VD method in Fig. 

5.8 is almost identical with our results obtained using the FT method for R1=4.5 (Fig. 5.6 (c))). 

 
Figure 5.7 Partitioning of the numerical grid into a propagation, virtual detector (VD), and 
absorption interval. The VD covers the interval [RVD

min, RVD
max]. 

 
 
 
 
Figure 5.8 KER for dipole-coupled 
a4Πu and f4Πg states as a function of 
the pump-probe delay for calculations 
using the VD method [Marian-82] and 
a 10 fs, 3×1014 W/cm2 probe laser pulse. 
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5.3.4 Influence of a probe-pulse pedestal 
Figure 5.9 shows calculated KER spectra for the same laser parameters as in Fig. 5.8 

using the FT method, with the exception that R1=4 and a long Gaussian pedestal [Thumm-08, 

Magrakvelidze-09, Winter-10], with a length of 100 fs and intensity 5×1011 W/cm2, is added to 

the main pulse (see Chapter 4. - Fig. 4.1). Due to the long pedestal a prominent energy-

dependent structure appears in the KER spectra. The reason why the energy-dependent structure 

is present only if a long pedestal is included can be explained based on the relation δEδt ≥ h. If 

only short pulses are present, the resolution in energy is such that one cannot observe the energy-

dependent structure. On the other hand, if only the pedestal of the probe pulse is present, the 

oscillatory motion cannot be resolved [De-11]. For example, in order to resolve energies up to 

0.1 eV, corresponding to the vibrational energy spacing in a4Πu, one needs to use pulses that are 

longer than 45 fs. The time-dependent structure is due to the periodic motion of the coherent 

vibrational wave packet on the given O2
+ state (the oscillation period for the a4Πu state is 33 fs, 

Table 5.1). A fragment-kinetic-energy dependent structure in the KER spectra was predicted as 

due to photoionization of vibrational states [De-11, Zohrabi-11]. 

 

 
Figure 5.9 KER as a function of 
pump-probe delay for the calculations 
using the FT method described in Sec. 
5.3.2. for R1 = 4. The probe pulse 
includes the Gaussian pedestal. The 
parameters used for the main pulse 
were 10 fs, with intensity 3×1014 
W/cm2 and for the pedestal 100 fs with 
the intensity 5×1011 W/cm2 
(propagated for 800 fs after the end of 
FWHM of the probe). 

 

 

 

 5.4 Comparison with the experiment 
The calculated KER as a function of the delay and the corresponding power spectrum 

(5.16) as a function of the QB frequency f for the a4Πu - f 4Πg two state calculation are shown in 

Fig. 5.10 (a) and (b) for a 10 fs probe pulse with a peak intensity of 3×1014 W/cm2 and a 100 fs 
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5×1011 W/cm2 Gaussian probe-pulse pedestal. Figures 5.10 (c) and (d) show the measured KER 

and power spectrum for a pump-probe intensity of 3×1014 W/cm2 and pulse duration of 10 fs. 

The measurements were done using velocity map imaging (VMI) spectrometer. The sampling 

time in the experimental spectrum in Fig. 5.10 (d) is T = 2000 fs with the revival time 1200 fs 

(not shown) [De-11]. Comparison with the experimental results in Fig. 5.10 (c) and (d) shows 

that several features of the experimental data are reproduced. 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.10 Calculated (a,b) and measured (c,d) [De-11] KER spectra for O2

+ as a function of 
pump-probe delay (a,c) and frequency f (b,d). Calculated KER spectra include dipole-coupling 
of the a4Πu  and f 4Πg states by the 10 fs probe laser pulse with 3×1014 W/cm2 peak intensity 
and a 100 fs 5×1011 W/cm2 Gaussian pedestal. The power spectra (b,d) are obtained for a 
sampling time of 2 ps. 

 

The oscillatory structure, with a period near 33 fs, is similar to the experimental period 

near 34 fs. The progressive tilt in the KER with increasing delay complies with a slightly larger 

return time of the more energetic spectral components of the vibrational wave packet and was 

noticed earlier in the fragmentation of D2
+ [Ergler-06-2, Feuerstein-07, Niederhausen-08, 

Feuerstein-03-1] and O2
+ [De-11]: a nuclear wave packet with dominant spectral contribution 

from low-lying vibrational states oscillates faster than a vibrationally warmer wave packet 
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(corresponding to higher KER), causing the KER structure to tilt toward larger delays. The 

difference in the classical oscillation periods [Feuerstein-07, Niederhausen-08] that correspond 

to wave packet components centered around on ν=11 and 13 vibrational states amounts to ~2.5 

fs. This is consistent with the oscillation period difference between the peaks on energy cuts at 

0.13 eV and 0.32 eV in the calculated KER spectra. However, the same difference in oscillation 

periods is obtained from the measured data for 0.14 eV and 0.25 eV.  

For better comparison with the measured KER we focal-volume-averaged our 

calculations for the intensity range 1013 - 4×1014 W/cm2 with steps of 1013 W/cm2, keeping the 

ratio between the peak intensities of the main pulse and the pedestal constant, according to 

𝐶𝑑𝚤𝑠𝑠�������(𝐸, 𝜏) = 1
𝑁
∑ 𝐶𝑑𝑖𝑠𝑠𝑁
𝑛=1 (𝐼𝑛;𝐸, 𝜏)                                   (5.11) 

where Cdiss is given by (3.36 in Chapter 3.7) (Fig. 5.11) and In = (n+1)×1013 W/cm2, with n=1, ..., 

N=13. The volume averaging effect on the energy-dependent structure is small.  

 
 

 
 
 
Figure 5.11 (a) Franck-Condon amplitudes {|aν|2} for the vertical ionization from the ground 
state of O2 to the a4Πustate of O2

+. (b) Delay-integrated focal-volume averaged KER as a 
function of the pump-probe delay, with main pulse length 10 fs, Gaussian pedestal length 100 
fs, and for R1=4. The focal-volume average is performed for peak intensities of the probe pulse 
between 1013 W/cm2 and 4×1014 W/cm2, with a fixed ratio of the peak intensities of the main 
pulse and pedestal of 0.01. (c) Delay-dependent focal-volume-averaged KER spectrum. 
 
As in Figs. 5.9 and 5.10 (a), the energy-dependent structure, with a spacing of approximately 0.1 

eV, is still seen in the focal volume averaged result (Fig. 5.11 (b)), where the separation between 

the peaks corresponds to the kinetic energies from the vibrational states in the a4Πu  electronic 

state: ν = 10 (0.03 eV), ν = 11 (0.13 eV), ν =12 (0.23 eV), ν = 13 (0.32 eV), and ν = 14 (0.41 
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eV). The expected KERs in the brackets are calculated as the dissociation energy limit of the 

a4Πu state subtracted from the sum of the given vibrational level and photon energy. The 

vibrational state ν=10 of the a4Πu state is energetically just above the dissociation limit of the f 
4Πg -ω field-dressed Floquet potential energy curve. Fig. 5.11 (a) shows the Franck-Condon 

amplitudes {|aν|2} for vertical ionization. The population decreases as the vibrational quantum 

number increases. Thus, we conclude that the origin of the energy structure likely arises from the 

vibrational states as predicted in [De-11, Zohrabi-11]. 

 

 5.5 Summary 
To summarize, we developed a method for identifying the adiabatic potential curves 

involved in the dissociation dynamics that contains three steps. First, we calculate adiabatic 

potential curves and electric-dipole-coupling matrix elements using the quantum chemistry code 

GAMESS. Next, we calculate nuclear probability-density spectra as a function of time and QB 

frequency for one molecular potential curve at a time and compare calculated revival times and 

QB frequencies with experimental data. After identifying relevant electronic states, we include 

laser-induced dipole-coupling in improved wave packet propagation calculations and again 

compare the resulting KER spectra with experimental data. We applied this scheme to O2 

molecules. After separately employing different combinations of electronic states of O2
+ in our 

calculations, we concluded that the a4Пu and f4Пg states are key players in the dissociation 

dynamics, as the calculated and measured KER are similar with matching oscillation periods (see 

Table 5.2) and revival times (not shown in Fig. 5.10). Calculating KER spectra in nuclear wave 

packet propagation calculations based on the Fourier -transformation method discussed in Sec. 

5.3.2 and the virtual detector method in Sec. 5.3.3, we obtained almost identical results. KER 

calculations including long probe-pulse pedestals were found to add an energy-dependent 

structure that is reminiscent of but does not clearly reproduce the energy dependence in 

measured KER spectra. The interpretation of this observed energy dependence remains a 

challenge for future investigations. 
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Chapter 6 - NOBLE GAS DIMERS IN TWO-COLOR IR LASER 

FIELDS 
The focus of this chapter is the study of the dissociation process of noble gas dimer ions by 

analyzing the KER spectra as a function of the pump-probe delay. 

 

6.1 Introduction 
Control and imaging of the nuclear wave packet dynamics of diatomic molecules in real 

time have been made possible by advances in laser technology [Ullrich-12, Calvert-10]. In 

particular, pump-probe-spectroscopic imaging is being employed to trace the nuclear motion in 

both, the smallest diatomic molecules, H2 and D2 [Ergler-05, Alnaser-05, Feuerstein-07, Ergler-

06-2, Winter-09, Calvert-10], and heavier diatomic molecules, such as O2, N2, and CO [De-11, 

Magrakvelidze-12-1, Bocharova-11], most recently including XUV-pump-XUV-probe 

experiments at free-electron laser facilities [Jiang-10, Magrakvelidze-12-2]. In these experiments 

the pump pulse ionizes the neutral molecule and a delayed probe pulse dissociates the molecular 

ion, revealing the nuclear dynamics in the bound and dissociating molecular ions through pump-

probe-delay dependent KER spectra. 

The noble gas dimers are more weakly bound and have much larger vibrational periods 

than the diatomic molecules mentioned above. Binding energies of the neutral dimers are in the 

1-25 meV range, orders of magnitude less than the binding energy of the dimer ions. Their 

vibrational periods are of the order of hundreds of femtoseconds, an order of magnitude larger 

than those of H2, O2, N2 and CO. Another characteristic feature of all noble gases is that the 

equilibrium distance of the neutral dimer is larger than for the dimer ion, so that the dimer ions 

contract after photoionization of the neutral parent dimers, before the molecular-ion nuclear 

wave packet reflects at the inner turning point of its adiabatic molecular state (Figs. 6.1- 6.3). 

 All these features, especially their comparatively slow nuclear motion, make noble gas 

dimers very attractive targets for the detailed investigation of their bound and dissociative 

nuclear dynamics in pump-probe experiments. For example the properties of the noble gas 

dimers are very important in the modeling of the larger clusters [Poisson-07]. Due to their weak 

binding, noble gases are metastable and can be made by cooling [Vassen-12].  
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Figure 6.1 Schematics of nuclear wave packet motion on generic Ng2 and Ng2
+ states. Pont A 

indicates the center of the Franck-Condon region. Points B-E and C-D correspond to the one 
photon transitions due to the laser pulses (ω1 = 1400 or 700 nm and ω2 = 800 or 500 nm in our 
calculations) . 

 

The focus of this chapter is the study of the dissociation process by analyzing the KER 

spectra as a function of the pump-probe delay for noble gas dimers Ng2 (Ng = He, Ne, Ar, Kr, 

Xe) and to see whether the “delay gap” observed in measured and calculated KER spectra for the 

Ar2 dimer ion [Wu-13-2] can also be observed for other noble gas dimers and explained within 

the same two-color “pump-dump” mechanism. The chapter is organized as follows. Section 6.2 

explains the theoretical model. Our numerical results are presented and discussed in Sect. 6.3. In 

particular, Section 6.3.1 discusses theoretical and experimental results for Ar2
+ dimers; Section 

6.3.2 covers numerical results for the rest of the noble gas dimers [Magrakvelidze-13]. Section 

6.3.2.1 discusses results for the single-cation-curve calculations. Classical vs. quantum aspects of 

the dissociation process are discussed in Section 6.3.2.2, and KER spectra resulting from the 

dipole-coupled calculations for the states with and without spin-orbit couplings are shown and 

discussed in Section 6.3.2.3, followed by a brief summary in Sect. 6.4.  
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6.2 Theoretical model  
Figure 6.1 shows the pump-probe process schematically. The pump pulse singly ionizes a 

Ng2 dimer. The nuclear motion in Ng2
+ can be traced from the KER spectra as a function of the 

delay between the pump and probe pulses. The delayed probe pulse (with a different wavelength) 

dissociates the ionized dimer (Ng2
+ →Ng + Ng+). Several dissociation paths are possible 

depending on the central wavelength of the laser pulse. After the ionization, the wave packet 

starts moving inward from point A of the Ng2
+ state (2Σu

+ or I(1/2)u) to the one-photon crossing 

points B (ω1) and C (ω2), where it may undergo a laser-induced transition to higher states of Ng2
+ 

(2Σg
+ or II(1/2)g), leading to the two different energy bands in the KER spectra depending on the 

paths ABE or ACD.  

As described in Chapter 5, we perform two kinds of calculations. The first are single-

cation-curve calculations, in order to identify the wave packet’s oscillating motion on 2Σu
+ or 

I(1/2)u bound states of Ng2
+. We plot the nuclear wave packet probability density as a function of 

propagation time and internuclear distance R, obtaining the wave packet revival times and 

oscillation periods in a given adiabatic molecular state [Magrakvelidze-12-1]. The calculations 

were done with time steps of Δt = 1, a grid spacing of ΔR = 0.01, and with a numerical grid 

length of 100 (excluding the absorber length of 10). The second type of calculations includes 

plotting the KER spectra for the dipole-coupled states. The calculations were done with a 

numerical grid length of 330 (including the absorber with a length of 20), with the same grid 

spacing and with the same time steps as in the single-cation-curve calculation. 

The potential energy curves used in our calculations are shown in Fig. 6.2 without spin-

orbit (SO) couplings and in Fig. 6.3 including SO couplings [Havermier-10, Gdanitz-00, Gadea-

96, Wüest-03, Cohen-74, Ansari-08, Ha-03, Stevens-77, Slavıček-03, Kalus-03, Paidarová-01, 

Wadt-80, NIST] The dipole-coupling elements between I(1/2)u –II(1/2)g and  2Σu
+ and 2Σg

+ states 

were taken from [Gadea-96, Ha-03, Paidarová-01, Wadt-80]. Out of all noble gas dimers, He2 is 

the weakest bound, with an energy around 1 meV, and the only one not having SO coupled states 

(The splitting for He2
+ vanishes because it has only s-electrons [Bransden-03]). For all dimers 

the equilibrium distance for the neutral is larger than the one for the ionic state. 
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Figure 6.2 Potential energy curves of Ng2 and Ng2
+ dimers, calculated without including spin-

orbit coupling. (a) Ground state of He2 (according to [Havermier-10, Gdanitz-00]), and the 
two lowest states of He2

+ (from [Gadea-96]). (b) Ground state of Ne2 (from [Wüest-03]), and 
the two lowest states of Ne2

+ (from [Cohen-74, Ha-03]). (c) Ground state of Ar2 (from [Ansari-
08]), and the two lowest states of Ar2

+ (from [Ansari-08, Ha-03, Stevens-77]).  (d) Ground 
state of Kr2 (from [Slavıček-03]), and the two lowest states of Kr2

+ (from [Kalus-03]). (e) 
Ground state of Xe2 (from [Slavıček-03]), and the two lowest states of Xe2

+ (from [Paidarová-
01]). 

 

6.2.1 Free nuclear motion in a single electronic state 
The free nuclear motion in a single electronic state has already been discussed in Chapter. 

5, but we briefly repeat the main points and state the grid parameters here as well. We allow the 

wave packet to freely propagate separately on individual adiabatic potential curves Vi(R) of the 

dimer ion. We neglect the rotation of the dimer and solve the TDSE  

𝑖 𝑑
𝑑𝑡

 𝛹𝑖 = [𝑇𝑅+ 𝑉𝑖(𝑅) ] 𝛹𝑖    (6.1) 

where TR= -(1/M)∂2/∂R2 is the kinetic energy operator of the nucleus with mass M, and Vi 

designates an adiabatic molecular potential curve of a noble gas dimer ion.  
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Figure 6.3 Potential energy curves of Ng2 and Ng2
+ dimers, calculated including spin-orbit 

coupling. (a) Ground state of Ne2 (from [Wüest-03]), and the two lowest states of Ne2
+ (from 

[Cohen-74]). (b) Ground state of Ar2 (from [Ansari-08]), and the two lowest states of Ar2
+ 

(from [Ha-03]). (c) Ground state of Kr2 (from [Slavıček-03]), and the two lowest states of Kr2
+ 

(from [Kalus-03]). (d) Ground state of Xe2 (from [Slavıček-03]), and the two lowest states of 
Xe2

+ (from [Paidarová-01]). 
 

Starting with the neutral dimer Ng2 in the ground state we model the creation of the Ng2
+ 

vibrational wave packet by the pump pulse in the FC approximation [Bransden-03, Thumm-08, 

Magrakvelidze-09]. For modeling a more “realistic” ionization process, ADK transition rates 

[Niederhausen-08, Brichta-06] could be used that give very similar results, so the results we 

show for single-cation-curve calculations are for FC approximation. We solve (6.1) for the initial 

wave packet 

𝛹1(𝑅, 𝑡 = 0) = ∑ 𝑎1,𝜈𝜈 𝜑1,𝜈(𝑅)      (6.2) 

that can be viewed as a coherent superposition of vibrational states 𝜑1,𝜈 in V1(R) with amplitudes 

𝑎1,𝜈 = �𝜑1,𝜈�Ψgr(𝑅, 𝑡 = 0)�, where Ψgr(𝑅, 𝑡 = 0) is the ground state of the neutral dimer.  The 

index ν corresponds to vibrational states φ1,υ in the V1 vibrational state of the molecular ion with 

vibrational energy ω1,υ. By numerical wave packet propagation (Chapter 3) [Thumm-08, 

Magrakvelidze-09] of (6.1) with the initial condition (6.2), we obtain the field-free evolution of  

𝛹1 

𝛹1(𝑅, 𝑡) = ∑ 𝑎1,𝜈𝜈 𝜑1,𝜈(𝑅)𝑒−𝑖𝜔1,𝜈𝑡.                                      (6.3) 
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Examining the nuclear probability density  

𝜌1(𝑅, 𝑡) = |𝛹1(𝑅, 𝑡)|2                                                         (6.4) 

as a function of the propagation time t in V1(R) allows us to identify oscillation periods and 

revival times [Bocharova-11, Robinett-04]. 

 

6.2.2 Dipole-coupled calculation  

Ionization and dissociation by pump and probe pulse 
Nuclear dynamics on dipole-coupled electronic states are discussed in Chapter 3.4 and 

Chapter 5.3.2, but modeling the ionization in the pump pulse in FC approximation. Here we 

present the dipole-coupled calculations for the ionization by pump and probe pulses using ADK 

rates. Starting with neutral Ng2 dimers, the parts of the wave packet from the ground potential of 

Ng2 Vgr are moved onto the Ng2
+ bound potential curves V1 (2Σu

+ or  I(1/2)u)  during the pump 

and probe pulses using ADK transition rates ΓADK [Niederhausen-08, Brichta-06]. In general, 

wave packets can be launched onto both bound and repulsive states of Ng2
+ (V1 (2Σu

+ or I(1/2)u), 

and V2 (2Σg
+ or II(1/2)g)), respectively. The part that is launched onto the excited state does not 

change the main features of the KER spectra. Therefore, we assume that initially only the bound 

state is populated.  The pump pulse and delayed probe pulse can dissociate the Ng2
+ ion. The 

TDSE for this process can be written as:   

𝑖 𝑑
𝑑𝑡
�
𝛹𝑔𝑟
𝛹1
𝛹2

� = �
𝑉𝑔𝑟−𝑖𝛤𝐴𝐷𝐾 0 0

0 𝑇𝑅 + 𝑉1+𝑖𝛤𝐴𝐷𝐾 𝐷21
0 𝐷12 𝑇𝑅 + 𝑉2

��
𝛹𝑔𝑟
𝛹1
𝛹2

� (6.5) 

 

where TR= - (1/M) ∂2/∂R2 is the kinetic energy of the nuclei, 𝛹𝑔𝑟 is the ground-state vibrational 

wavefunction obtained by imaginary time propagation in the ground state Vgr of Ng2, and 

𝐷𝑖𝑗 = 𝐸(𝑡)𝑑𝑖𝑗, with 𝑑𝑖𝑗 = 〈Ψ𝑖|𝑅|Ψ𝑗〉, are transition dipole matrix elements between the two 

cation adiabatic electronic states. The combined external electric field E(t) of the pump and 

probe pulses is  

 𝐸(𝑡, 𝜏) = 𝐸01cos[𝜔1(𝑡)]𝑒𝑥𝑝 �−2𝑙𝑛2 � 𝑡
𝑇1
�
2
� + 𝐸02cos[𝜔2(𝑡 − 𝜏)]𝑒𝑥𝑝 �−2𝑙𝑛2 �𝑡−𝜏

𝑇2
�
2
�    (6.6) 

The pump (probe) pulse is assumed to have a Gaussian envelope with electric field amplitude E01 

(E02), frequency ω1 (ω2), and pulse length (full width – half intensity maximum) T1 (T2).  
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Figure 6.4 Probability density of the nuclear wave packet moving on the 2Σu
+ state of Ar2

+ for a 
pump-probe (800 -1400 nm) delay of 150 fs and laser intensity 1014 W/cm2. The dashed red 
line corresponds to the R1=10 cut. The 500 fs propagation time begins after the end of the 
FWHM of the probe pulse.  

 

After the probe pulse has passed, the wave packet is allowed to freely propagate for a 

sufficiently long time (~500 fs). This allows the nuclear wave packet to completely enter the 

region R > R1 (R1=10), and the bound part of the wave packet becomes separable from its 

dissociating part (Fig. 6.4) [He-10]. In order to determine the KER spectrum of the molecular 

ion, we Fourier transform the dissociating parts of the nuclear wave packet over the interval 

[R1,Rmax] to obtain the momentum representation,  

𝛹�𝑖𝑑𝑖𝑠𝑠(𝑃, 𝑡) = ∫ 𝑑𝑅𝛹𝑖𝑑𝑖𝑠𝑠(𝑅, 𝑡)𝑒−𝑖𝑃𝑅𝑅𝑚𝑎𝑥
𝑅1

,     (6.7) 

where Rmax is the maximum size of the numerical grid (310 in our calculations excluding the 

absorber), and R1 is 10. The distribution of the Ng+ fragment energies as a function of the delay 

can then be written as (Chapter 3.7) 

𝐶𝑑𝑖𝑠𝑠(𝐸, 𝜏) ∝ ∑ �Ψ�𝑖𝑑𝑖𝑠𝑠(𝑃, 𝑡)�
2

𝑖       (6.8) 

where 𝐸 = 𝑃2/2𝑀 is the energy, and P is the momentum of the Ng+ fragment. The total KER is 

twice 𝐸.  
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6.3 Results and discussions 

6.3.1 Measured and calculated results for Ar2
+ dimers 

6.3.1.1 Experiment 

The experiment was done at the Institute of Nuclear Physics (IKF) in the Goethe 

University in Frankfurt, Germany. In the experiment a Ti:sapphire laser system was used to 

generate 780 nm pulses that were split into a pump and probe pulse, then one pulse was sent to 

an optical parametric amplifier to vary its wavelength (1400 nm). The time delay between the 

pump and probe pulse was controlled using a motorized translation stage with a step size of 10 

fs. Neutral Ar2 was generated from a collimated supersonic gas jet and ionized by linearly 

polarized laser pulses at various wavelengths. The COLTRIMS apparatus was used to detect 

charged fragments [Ullrich-03]. The 3D momenta and KER as a function of pump-probe delay 

of the Ar+ ions from ionization and dissociation events were reconstructed from the detected 

times of flight and positions of the charged particles. 

 

6.3.1.2 Results 

Before conducting a TDSE calculation including dipole couplings, we first try to identify 

electronic states that contribute to the dissociation dynamics by examining the dynamics of a 

nuclear wave packet separately on individual adiabatic potential curves of the molecular ion, in 

our case 2Σu or I(1/2)u. Looking at the oscillation period and revival times [Bocharova-11, 

Robinett-04] for each state and comparing those values to the measured ones, we choose the state 

contributing to the dynamics.  

As an example, the probability density (6.4) of the freely propagated wavefunction on the  

I(1/2)u potential curve is given in Fig. 6.5. As one can see the revival time for the wavefunction 

is around 7.4 ps and the wavefunction oscillation period for this state is around 250fs, matching 

the oscillations observed in the experiment. Thus, the I(1/2)u electronic state plays a major role in 

the dissociation dynamics. The 2Σu state has an oscillation period around 230 fs, close to the 

experimental value, but the expected KER for this state does not match the measured KER 

(Table 6.1). Table 6.1 shows all the combinations and expected KERs for the Ar2
+ states with 

and without SO coupling. The combination of the I(1/2)u state coupled with the II(1/2)g state 

gives an expected KER closest to the experimental values. 
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Figure 6.5 Probability density of a freely propagated wavefunction on an Ar2
+ potential curve 

(I(1/2)u). The solid blue line corresponds to the expectation value of the internuclear distance 
<R>. 
 
Table 6.1 Expected KERs for electronic states of Ar2

+ with and without SO coupling. 

 
Electronic state Expected KER 

(1400nm) eV 
Expected KER 

(800nm) eV 
Measured 

KER 
(1400nm) eV 

Measured 
KER 

(800nm) eV 
2Σu / 2Σg

+ 0.75 1.41 

0.5 1.2 

2Σu / 2Пg
+ 0.70 1.40 

I(1/2)u /  I(1/2)g 0.71 2.24 
I(1/2)u /  I(3/2)g 0.72 2.26 
I(1/2)u /  II(1/2)g 0.53 1.22 
 

We have done calculations including the following states.  Without SO coupling  2Σu / 
2Σg

+, 2Σu / 2Пg
+, and with SO coupling  I(1/2)u / II(1/2)g, I(1/2)u/ I(3/2)g, and I(1/2)u/ I(1/2)g. The 

states leading to the best agreement with experimental KER spectra are: I(1/2)u  and II(1/2)g. 

Figure 6.6(b) shows our calculated time-delay-dependent KER spectrum focal-volume 

averaged over intensities between 1012 and 1014 W/cm2. The numerical simulation reproduces 

several features of the experimental data in Fig. 6.6(a), such as the strong enhancement of the 

dissociation yield near zero time delay and (for both positive and negative delays) and the 

periodic stripes that map the oscillation of the vibrational wave packet on the I(1/2)u potential 
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curve. Most importantly, the frustrated dissociation effect, i.e., the “delay gap” in the band of 

KERs near 1.18 eV for positive delays, is reproduced in the calculation. Numerical tests show 

that this gap also occurs at different combinations of wavelengths (we tried the pump/probe 

wavelengths 600-1200 nm, 790-1000 nm, and 790-1800 nm), as long as the wavelengths of the 

pump and probe pulse remain sufficiently different for the resulting two bands of KER to be 

distinguishable in the KER spectrum. Two pulses of different wavelength can thus be used as a 

gate, either allowing or terminating the previously initiated dissociation along a specific 

adiabatic molecular potential curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 (a) Measured KER spectrum for Ar+ as a function of the pump-probe time delay for 
60 fs laser pulses with a peak intensity of 1014 W/cm2. The orange and yellow curves are 
partial fragment yields obtained by integrating the spectrum in (a) over the KER ranges from 
0.8 to 1.0 eV and 0.35 to 0.4 eV, respectively. (b) Corresponding calculated KER spectrum.  

 

6.3.2 Calculated results for Ng2
+ dimers 

6.3.2.1 Single-cation-curve calculations 

First, the numerical results for single-cation-curve calculations are discussed for the 

nuclear motion in Ng2
+ dimers on I(1/2)u potential curves [De-10, De-11, Magrakvelidze-12-1, 

Thumm-08]. Figure 6.7 shows the probability density (6.4) of the freely propagated vibrational 
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wave packets in the I(1/2)u states of Ne2
+, Ar2

+, Kr2
+, and Xe2

+. Our single-cation-curve 

calculations for the 2Σu
+ states yield similar probability densities with slightly different 

oscillation periods and full revival times (not shown). The full revival times and wave packet 

oscillation periods for the wave packet motion in the 2Σu
+ and I(1/2)u states, excluding and 

including SO coupling, respectively, are summarized in Table 6.2.  This table also lists the 

number of bound vibrational states in both electronic cation states. The oscillation period and 

revival time for the  Ar2
+ I(1/2)u state are close to those observed  [Wu-13-2].  

Some periodic oscillatory structure is present for the He2
+ dimer in the single-cation-

curve calculations, and the revival time is of the order of 525 fs, but the structure does not allow 

the extraction of a vibrational oscillation period due to the very delocalized vibrational ground 

state of He2 (Fig. 6.7(a)). The width of this state is 15 a.u. Table 6.3 summarizes some of the 

characteristic parameters of the noble gas dimers and their cations, such as the SO splitting, 

reduced mass, ionization and dissociation energies, ground-state equilibrium distances, and the 

width of the ground state probability densities as obtained from our calculations.  

 

Table 6.2 Revival times and wave packet oscillation period for I(1/2)u  and 2Σu
+ states of Ng2

+ 

dimers, and variance (ΔR)2 calculated at the oscillation period Tosc. 

Dimer 

2Σu
+ I(1/2)u Variance 

(ΔR)2 
(a.u.) 

calculated 
at Tosc

 

Number of 
bound 

vibrational 
states 

Oscillation 
period (fs) 

Revival 
times 
(ps) 

Number of 
bound 

vibrational 
states 

Oscillation 
period (fs) 

Revival 
times (ps) 

He2
+ 23 - 0.5 - - - >12 

Ne2
+ 41 250 2.8 32 230 2.2 0.85 

Ar2
+ 69 290 7.9 63 250 7.5 0.15 

Kr2
+ 111 490 22 91 460 19.0 0.09 

Xe2
+ 149 550 39 131 510 38.2 0.03 
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Figure 6.7 Probability density of the nuclear wave packet as a function of the internuclear 
distance R and scaled propagation time for I(1/2)u states of  He2

+ (a), Ne2
+ (b), Ar2

+ (c), Kr2
+ 

(d) and Xe2
+ (e) dimers. The superimposed blue curve shows the expectation value <R>. 
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Table 6.3 Selected properties of noble gas dimers (Ng2) and their cations (Ng2
+). Column 2 – 

reduced mass,  3 – equilibrium distance R0(Ng2) of the ground state of neutral dimer, 4 – 
equilibrium distance of the dimer cation R0(Ng2

+) without SO coupling, 5 – dissociation 
energy of the neutral dimer ground state De(Ng2), 6 – dimer cation dissociation energy in the 
ground state De(Ng2

+) without spin-orbit coupling, 7 – dissociation energy in the ground state 
De(Ng2

+) with spin-orbit coupling. 8 – ionization energy Ip of Ng2, 9 – spin-orbit splitting of 
Ng2

+ (eV), 10 –  the full width at half maximum of the ground state dimer nuclear probability 
density. 

1 2 3 4 5 6 7 8 9 10 

 
Dimer 

Reduced 
mass of 

Ng2
 (a.u.) 

R0(Ng2) 
(a.u.) 

R0(Ng2
+) 

(a.u.) 
De(Ng2) 
(meV) 

De (Ng2
+) 

2Σu
+ 

(eV) 

De(Ng2
+) 

I(1/2)u 
(eV) [10] 

Ip (eV) 
of Ng2  

[7] 

SO 
splitting of 
Ng2

+ (eV) 

Width of Ng2 
vibrational 

ground state  
(a.u.) 

He2 3651.91 5.61[4] 2.4 [8] 0.94 [4] 2.5[8] - 24.6 - 15 

Ne2 18411.65 5.8[5] 3.3[1] 3.6[5] 1.2[9] 1.17 21.76 0.096[1] 1.6 

Ar2 36447.90 7.1 [2] 4.6[1,2] 12.3[2] 1.24[10] 1.19 14.51 0.18[1,2] 1.0 

Kr2 76456.01 7.6 [6] 5.0[1] 17.3[6] 1.23[10] 1.05 12.87 0.67[1] 0.7 

Xe2 119789.70 8.3 [6] 5.9[3] 24.4[6] 1.08[10] 0.79 11.24 1.31[3] 0.3 
1 Ha-03, 2 Ansari-08, 3 Paidarová-01, 4 Gdanitz-00, 5 Wüest-03, 6 Slavıček-03, 7NIST, 8Gadea-96, 9Cohen-74, 10Wadt-80 

 

6.3.2.2 Classical and quantum mechanical approach to dissociation dynamics 

With increasing mass of the dimer the number of oscillations during which the 

vibrational motion in the dimer cation dephases increases (Fig. 6.7(b-e)). For the Xe2
+ dimer the 

nuclear wave packet dephases much slower compared to Ne2
+. The number of vibrational 

oscillations the wave packet completes before dephasing is 1 for Ne2
+, ~3 for Ar2

+, ~ 5 for Kr2
+,  

and ~14 for Xe2
+, indicating that heavier dimers more closely resemble classical particles, in 

compliance with the correspondence principle. In addition, the vibrational ground states of 

heavier dimers are more localized.  For example, the ground-state probability density has a width 

of 0.5 a.u. for Xe2 and ~15 a.u. for He2. 

To expand more on the “classical” character of heavier dimers, briefly mentioned in 

section 6.3.2.1,  the classical approach to dissociation dynamics is discussed based on the 

variances ∆𝑅2 and ∆𝑃2. Figure 6.8 summarizes the calculated variances ∆𝑅2 = 〈𝑅2〉 − 〈𝑅〉2,  

∆𝑃2 = 〈𝑃2〉 − 〈𝑃〉2, and ∆𝑅∆𝑃  for wave packet motion in I(1/2)u state of Ng2
+ ions as a function 

of time, scaled with the  revival times of corresponding molecular ion. As shown in Fig. 6.8 and 

in the last colomn of Table 6.2, the calculated ∆𝑅2 variance is more than one order of magnitude 

less for Xe2
+ compared to Ne2

+ after one vibrational oscillation period Tosc in I(1/2)u, pointing to 

less spread of the wave packet as the mass of the dimer increases. The variance oscillation is 
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consistent with the wave packet oscillation in I(1/2)u states and the (∆𝑅)2 variances have clear 

minima at the revival times (corresponding to t / Trev = 1 on the graph). As the mass of the dimer 

icreases, the minima become more distinctive. The same is true for the momentum variance 

(∆𝑃)2; the spread has noticable structure at the revival times. The last column in Fig. 6.8 the 

plots calculated uncertainty product ∆𝑅∆𝑃.  

 
Figure 6.8 Position variance (ΔR)2, momentum variance (ΔP)2, and uncertainty product 
ΔRΔP as a function of time scaled with respective revival times for Ne2

+, Ar2
+, Kr2

+, and Xe2
+ 

noble gas dimers in the I(1/2)u state. Due to the absence of a clear wavefunction revival in our 
He2

+ propagation calculation (2Σu
+ state), we scale the time in the first row by the approximate 

revival time 525 fs. 
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Table 6.4 Expected KERs for calculations based on adiabatic molecular potential curves that 
include or do not include SO coupling. In calculations without SO coupling we include the 
dipole-coupled 2Σu and  2Пg

+states of the dimer cation; for calculations with SO coupling  the 
I(1/2)u and II(1/2)g states.  

Dimer KERs  
(800nm) 
no SO 

KERs  
(1400nm) 

no SO 

KERs  
(800nm) 
with SO 

KERs  
(1400nm) 
with SO 

He2
+ 1.6 eV 0.8 eV 1.6 eV 0.8 eV 

Ne2
+ 1.45 eV 0.75 eV 1.3 eV 0.6 eV 

Ar2
+ 1.35 eV 0.6 eV 1.18 eV 0.45 eV 

Kr2
+ 1.3 eV 0.54 eV 0.25 eV  0.008 eV 

Xe2
+ 1.2 eV 0.5 eV 0.1 eV  - 

 
 

  KERs  
(500nm) 
with SO 

KERs  
(700nm) 
with SO 

Kr2
+ - - 1.0 eV  0.4 eV  

Xe2
+ - - 0.9 eV  0.25 eV  

 

6.3.2.3 Discussion of the dipole-coupled calculations 

The distinctive “delay gap” is observed in KER spectra for Ar2
+, measured for 800 and 

1400 nm pump probe pulses with pulse length 80 fs and an intensity of 1014 W/cm2 [Wu-13-2]. 

Calculations using the same pulse parameters and the I(1/2)u and II(1/2)g states of Ar2
+ reproduce 

the gap [Wu-13-2]. It is interesting to see whether the gap is present for other noble gas dimers 

and whether it has the same explanation. In this subsection the calculations for Ng2
+ are 

presented including states without and with SO couplings. 

KER spectra as a function of internuclear distance and pump-probe delay for calculations 

that include dipole coupling for the states Ng2
+ (2Σu

+ and 2Σg
+) are given in Fig. 6.9. The 

parameters for the pump (probe) pulse used were 800 (1400) nm wavelength, 80 fs pulse length 

and a peak intensity of 1014 W/cm2, as in the experiment from Ref. [Wu-13-2]. The oscillating 

structures visible for the energy bands on both the negative and positive delay sides correspond 

to the wave packet oscillations in the 2Σu
+ states of Ng2

+:  ~230 fs for Ne2
+, ~250 fs for Ar2

+, ~ 

460 fs for Kr2
+, and ~550 fs for Xe2

+. Two separate energy bands are present corresponding to 

dissociation through different avoided one-photon crossings (800 or 1400nm). The ”delay gap” 

discussed in [Wu-13-2] is observed only for positive delays. The width of the “gap” is on the 

order of 150-200 fs. Expected KERs are summarized in Table 6.4.  
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Figure 6.9 KER spectra as a function of pump-probe delay for He2
+, Ne2

+, Ar2
+, Kr2

+, and Xe2
+ 

states with no spin-orbit coupling, and 800  -1400 nm pump-probe pulses with 80 fs length and 
1014 W/cm2 intensity. 
 

For positive (negative) delays, the 1400 (800) nm probe pulse comes after the 800 (1400) nm 

pump. Starting from the negative delays, we try to explain the main features of the KER spectra. 

The 1400 nm pump couples part of the wave packet from the 2Σu
+ (or I(1/2)u) state into the 2Σg

+ 

(or II(1/2)g) state (B to E in Fig. 6.1), which dissociates giving the lower energy band in the KER 

spectra (0.1-0.9 eV range). The rest of the wave packet continues moving inward on the 2Σu
+ (or 

I(1/2)u) state to the point where the 800 nm probe couples it onto the 2Σg
+ (or II(1/2)g) state (C to 

D in Fig. 6.1), resulting in the higher energy band in the KER spectra (0.9-1.9 eV range). In the 

case of positive delays, the pump-probe sequence is reversed. The 1400 nm probe couples part of 
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the wave packet into the excited Ng2
+ (2Σg

+ or II(1/2)g) state, leading to the lower energy bands in 

the KER spectra (B to E in Fig. 6.1), and the rest of the wave packet is coupled from the lower 

Ng2
+( 2Σu

+ or I(1/2)u) to the higher Ng2
+( 2Σg

+ or II(1/2)g) state by  the 800 nm pump pulse (C to 

D in Fig. 6.1). This would result in dissociation into the higher energy band. However, the 1400 

nm probe pulse couples the wave packet back to the 2Σu
+ (or I(1/2)u) state (E to B in Fig. 6.1), 

leading to the “delay gap” in the KER spectra. Note that if the 1400 nm probe pulse comes after 

the dissociative wavefunction passes the 1400 nm crossing, the “gap” is no longer present (more 

details can be found in [Wu-13-2]). For Xe2
+, the time from A to C on 2Σu

+ is larger than the 

pulse length (80 fs), so we do not see the upper band on the positive delay side in Fig. 6.9e 

(Table 6.5). 

 

Table 6.5. Results of the classically calculated propagation times from point A to B and from 
B to C in Fig. 6.1 along the diabatic potential curves of noble gas dimer cations in 2Σu

+ and 
I(1/2)u  electronic states for the wavelength combinations  800+1400 and 500+700 nm. 

Dimer 2Σu
+ 800+1400  I(1/2)u 800+1400 I(1/2)u  500+700 

tAB (fs) tBC (fs) tAB (fs) tBC (fs) tAB (fs) tBC (fs) 
Ne2

+
 22 9 21 12 - - 

Ar2
+ 30 15 38 20 - - 

Kr2
+ 36 29 0 46 51 28 

Xe2
+ 45 42 0 - 50 53 

 

 

Figure 6.10 summarizes the dipole-coupled calculations for the states including SO coupling, 

I(1/2)u and II(1/2)g. We used the same pulse parameters as in the calculations shown in Fig. 6.9. 

The “delay gap” we are looking for is also present in these calculations for the dimers He2
+- 

Ar2
+. The KER spectra for Kr2

+ and Xe2
+ calculated for the 800-1400 nm wavelength 

combination (Fig. 6.10(d,e)) have only one energy band below 0.2 eV, because the one photon 

crossing that corresponds to 1400 nm does not exist for Xe2
+ due to SO coupling of the ungerade 

and gerade states. The resulting KER (from the one-photon crossing corresponding to 1400 nm) 

for Kr2
+ is close to zero (Table 6.4). The KER spectra in Fig. 6.9 show lower energies compared 

to the spectra in Fig. 6.10. The reason for this lowering of KER bands is the change of the shape 

of the potential energy curves: the width and depth of the I(1/2)u and the slope of II(1/2)g states 

are different from the 2Σu
+ and 2Σg

+ states due to  SO coupling. 
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Figure 6.10 (a) Same as Fig. 6.8(a). 
(b)-(e) KER spectra for states 
including SO coupling of Ne2

+-Xe2 
calculated with 800 - 1400 nm 
pump-probe wavelengths.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 KER spectra as a function 
of pump-probe delay for Kr2

+ and Xe2
+ 

states with spin-orbit coupling, and 
500-700nm pump-probe pulses with 
80 fs length and 1014 W/cm2 intensity. 
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For the Kr2
+ and Xe2

+ we have used different pump-probe wavelength combination, 500-

700 nm, and plot KER spectra as shown in Fig. 6.11. The reason why we have to use different 

wavelength combination is that the one photon crossing for 1400 nm wavelength is not present 

due to the large gap of SO coupled states of Xe2
+; the resulting KER from the one photon 

crossing is close to zero for Kr2
+ as mentioned above. The “delay gap” for the given wavelengths 

is present, but the double-band energy structure is not clearly visible for the same reason as for 

the calculations including non-SO-coupled states (the time the wave packet takes from A to C in 

Fig 6.1 is longer than the pulse length for Xe2
+, Table 6.5). In principle one can find wavelength 

and pulse length combinations such that the KER spectra would have two energy bands for Xe2
+. 

 

 6.4 Summary 
We have investigated the dissociation dynamics in noble gas dimers in two-color IR 

pump and probe fields. The “delay gap” on the positive side of the KER spectra, observed in the 

Ar2
+ dimer, is also present for He2

+ , Ne2
+ , Kr2

+ and Xe2
+ dimers. This striking feature can be 

explained by a simple model where the wave packet is coupled by two-color laser pulses on the 

I(1/2)u (or 2Σu
+) and II(1/2)g (or 2Σg

+) states of Ng2
+. Comparing pump-probe-pulse delay-

dependent kinetic-energy-release spectra for different noble gas dimer cations, we quantitatively 

discussed quantum-mechanical versus classical aspects of the nuclear vibrational motion as a 

function of the nuclear mass. In addition, based on the study of the variances, as the mass of the 

system increases, the more it resembles a classical particle as the wave packet spreads less for 

the heavier dimers. Also, we found that as the mass of the dimer increases, the fine structure 

effects become more noticable in the KER spectra. 
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Chapter 7 - OXYGEN AND NITROGEN MOLECULES IN XUV 

FIELDS 
 

 7.1 Introduction 
Investigating nuclear wave-packet dynamics of diatomic and more complex molecules in 

various charge states with time-resolved experiments gives detailed insight into reaction 

pathways as a function of the excitation conditions and offers the possibility to test calculated 

potential energy surfaces for these species [Bocharova-11, De-11, Feuerstein-07, Thumm-08]. 

Ultrafast nuclear wave-packet dynamics in various charge states of diatomic molecules, 

up to now, were almost entirely examined with time-resolved pump-probe spectroscopy using 

intense few-cycle near-infrared (NIR) laser pulses [Bocharova-11, De-11, De-10, Ergler-05]. 

However, these high-peak-intensity pulses tend to induce strong couplings between dipole-

allowed adiabatic molecular states. Accordingly, NIR pump – NIR probe spectroscopy very 

sensitively probes the nuclear dynamics near curve crossings that result from such couplings. 

Importantly, the localization of NIR-induced couplings at avoided crossings means that NIR 

pump – NIR probe experiments examine the nuclear dynamics of field-dressed, rather than 

external-field-free adiabatic molecular potential curves. Moreover, the presence of intense NIR 

pulses, in general, perturbs the target of interest significantly, such that those pulses also alter the 

outcome of chemical reactions. For this reason, strictly speaking, NIR pulses are not suitable for 

detecting and exploring nuclear motion on unperturbed potential curves.  On the other hand, 

intense, ultra-short extreme ultraviolet (XUV) radiation would be much better suited for the task 

as detailed below. Recent progress in the development of tunable intense XUV laser sources led 

to the realization of isolated XUV pulses with pulse durations below 100 attoseconds 

[Goulielmakis-08]. XUV and X-ray laser pulses are produced by either employing high-

harmonic generation [L'Huillier-83, Krausz-09] or free-electron lasers [Hoener-10]. In contrast to 

intense NIR pulses, their interaction with atomic and molecular targets is characterized by large 

Keldysh parameters, corresponding to ionization by the absorption of no more than a few 

energetic photons. In addition, with regard to identifying reaction pathways, the absorption of a 

known small number of energetic photons (rather than a large, not-well determined number of 

less energetic photons provided by a NIR pulse of comparable spectral width) tends to induce 
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electronic transitions to a more narrowly defined part of the target electronic spectrum. 

Furthermore, since these XUV and X-ray sources are tunable, transitions into specific spectral 

regions can be selected. In dissociative reactions, the KER can thus be resolved with regard to 

the number of absorbed photons and the pump-pulse-generated intermediate charge states of the 

molecular ion. This is done for a comparatively narrow spectral range of intermediate adiabatic 

states which are populated by short-wavelength pump and probe pulses, facilitating the 

assignment of possible dissociation (reaction) pathways. Time resolutions on the order of a few 

femtoseconds can be realized, which is short enough to trace even the fastest motion of nuclei in 

molecules. Attempts to achieve even higher resolution in time, in order to simultaneously follow 

the electronic motion during chemical reactions or to zoom into fast rearrangement processes, 

would decrease the spectral resolution. 

Recently, the nuclear wave-packet dynamics in diatomic molecular ions have been 

investigated in several XUV pump - NIR probe experiments [Cao-10, Cao-11, Gagnon-07, 

Kelkensberg-09, Sandhu-08, Sansone-10]. In those experiments the pump pulse is perturbative 

but the NIR-probe pulse efficiently couples potential energy curves of the molecular ion, making 

these studies sensitive mainly to confined regions of internuclear distances where the coupling is 

strong. This limitation is removed in XUV pump – XUV probe spectroscopy pioneered in 

[Rudenko-10], where the first XUV pulse ionizes the neutral molecule and initializes a nuclear 

wave-packet in the ionic species of interest on potential energy curves that lie within a specific 

spectral range of the molecular ion. The second XUV pulse probes the dynamics by a subsequent 

ionization step, removing one or several electrons. In contrast to NIR probe pulses, for 

sufficiently high XUV photon energy, the final charge state of the molecular ion will be reached 

for any given pump-probe delay. Hence, the wave-packet motion can be observed along the 

entire reaction coordinate. In addition, this scheme often leads to multiple ionization and, as a 

result, to fragmentation by CE. Measurement of the resulting KER and momentum distributions 

as a function of the pump-probe delay then enables the imaging of the wave-packet dynamics (if 

the reflection principles can be applied and the fragmentation potential energy surfaces are 

known) in the same way as for NIR pump – NIR probe CE experiments (see, e.g., [De-10]), but 

without the limitations described above. Following this approach, XUV pump – XUV probe 

experiments have recently been conducted to trace the nuclear wave-packet motion in the D2 
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cation [Jiang-10-1] and to measure the isomerization dynamics in the acetylene cation [Jiang-10-

2].  

In this chapter, we report on XUV pump – XUV probe studies performed at FLASH with 

the goal of elucidating the nuclear wave-packet dynamics following the XUV ionization of O2 

and N2 at a central photon energy of 38 eV. By comparing our experimental results with classical 

and quantum-mechanical calculations, based on available potential energy curves for various 

charge states of these molecules, we describe a method for identifying the dominant dissociation 

pathways.  

 

 7.2 Experimental method 
A reaction microscope (also known as COLTRIMS) [Ullrich-03] was used to record the 

three-dimensional momentum vectors of fragment ions at beam line BL3 of FLASH. The 

temporal overlap between the two XUV pulses was determined by detecting the delay-dependent 

dissociation of the coincident O+ + O2+ (N+ + N2+) fragments, where a maximum in the 

dissociation yield at zero delay-time was observed [Jiang-09]. With a focus diameter of ~20 µm 

and pulse energies of a few µJ at an estimated average pulse duration of ∼80 fs [Jiang-10], the 

experiment reached peak intensities of the order of 1013 W/cm2 at a photon energy of 38±0.5 eV. 

Ionic fragments were projected by means of an electric field (40 V/cm) onto a time- and 

position-sensitive micro-channel plate detector (diameter 120 mm, position resolution 0.1 mm, 

multi-hit delay-line read-out) and recorded as a function of the pump-probe time delay. From the 

measured time-of-flight (TOF) and position of each individual fragment, the initial three-

dimensional momentum vector was reconstructed. The resolution in the KER is better than 50 

meV for all fragment energies detected. For more details see [Rudenko-10, Jiang-10-2, 

Magrakvelidze-12-2]. 

 

  7.3 Theoretical methods 
We use two separate numerical methods for identifying dissociation pathways in terms of 

adiabatic electronic states involved in the molecular fragmentation dynamics. In the first 

“classical“ model we calculate the KER, K(τ), as a function of the pump-probe delay, τ, 

[Bocharova-11] by solving Newton’s equations for nuclear motion on adiabatic molecular 

potential curves in order to understand the main features in the measured spectra. In the second, 
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more accurate quantum-mechanical model, we solve the TDSE for the motion of the nuclear 

wave-packet on selected molecular potential curves. This allows us to simulate KER spectra for 

given dissociation paths, i.e., for a given sequence of adiabatic molecular states that are 

successively populated by ionization of the neutral molecule with the pump and, subsequently, of 

the molecular ion with the probe XUV pulse. Finally, by comparing the simulated and measured 

KER spectra, we attempt to assess the importance of specific dissociation pathways considered 

in our quantum calculations. 

 

 7.3.1 “Classical” simulations 
In this model the XUV pump pulse is assumed to instantaneously ionize the neutral 

molecule by removing one or more electrons at time zero. In response, the nuclei are assumed to 

start moving as classical point particles on a selected intermediate (bonding) adiabatic molecular 

potential curve of the molecular ion in a specific charge state and at an internuclear distance, R 

that is equal to the equilibrium distance in the neutral molecule before ionization. This modeling 

of the pump process corresponds to the FC approximation in quantum mechanical calculations 

(Chapter 3). The subsequent nuclear motion is described by solving Newton’s equations of 

motion for the selected adiabatic potential curve of the molecular ion.  

Similarly, the delayed XUV probe pulse is assumed to instantaneously (multiply) ionize 

the molecular ion at the pump-probe-delay time τ. The nuclei start their classical motion after the 

probe pulse with the relative velocity they had just before the action of the probe pulse. Their 

classical motion after the probe pulse is assumed to be dissociative and to proceed on a repulsive 

Coulomb potential curve α/R, with α=qp, where q and p are the charges of the two fragments. 

The KER for a given delay is thus obtained by adding the kinetic energy of the relative motion of 

the nuclei at time τ to the Coulomb repulsion energy α/R(τ) (see [Bocharova-11, De-11] for 

details). This calculation is repeated for several intermediate adiabatic electronic states.  

 

 7.3.2 Quantum mechanical simulations 
As for our classical model, we describe the action of both XUV pump and XUV probe 

pulses as a sudden removal of one or more electrons. Prior to the pump pulse, for times t<0, we 

assume the neutral molecule to be in its electronic and vibrational ground state. The 

instantaneous ionization of the neutral molecule by the pump pulse is modeled to result in a 
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vertical (FC) transition to a preselected bonding adiabatic potential curve, Ei(R), of the molecular 

ion in a given charge state, on which a nuclear vibrational wave packet,  𝛹(𝑅, 𝑡), starts to evolve. 

This wave packet can be thought of as a coherent superposition of vibrational eigenstates 𝜑𝜈 , 

𝛹(𝑅, 𝑡) = ∑ 𝑎𝜈 𝑒𝑥𝑝(−𝑖𝜔𝜈𝑡)𝜑𝜈(𝑅)𝜈 , 

with energies ωυ on the selected potential curve Ei(R). In the absence of external fields, 𝛹(𝑅, 𝑡) 

propagates freely on Ei(R), starting at time t=0 in the vibrational ground state of the neutral 

parent molecule. We obtain 𝛹(𝑅, 𝑡) by propagating the TDSE for 300 fs with time steps of Δt = 

1 a.u. on a numerical grid that covers the interval 0 ≤ 𝑅 ≤ 100 a.u. with equidistant grid spacing 

∆𝑅 = 0.02 a.u. [Feuerstein-03-1].  

The free propagation of  𝛹(𝑅, 𝑡) on Ei(R) is interrupted by the probe pulse at the delay 

time τ. This action further ionizes the molecular ion and is assumed to instantaneously project 

the nuclear wavefunction onto a dissociative final adiabatic molecular potential curve, Ef(R). We 

thus obtain the KER distribution 

𝑌(𝐾, 𝜏) = |𝛹(𝑅(𝐾), 𝜏)|2 �𝑑𝐸𝑓
(𝑅)

𝑑𝑅
�
−1

                       (7.1) 

by mapping the nuclear probability density |𝛹(𝑅, 𝜏)|2 at a given delay onto Ef(R). For 

dissociation along a pure Coulomb potential curve, Ef(R) = α/R, (7.1) simplifies to 

𝑌(𝐾, 𝜏) = |𝛹(𝑅(𝐾), 𝜏)|2 𝑅
2

𝛼
               (7.2) 

Note that K in (7.1) and (7.2) is the sum of the kinetic energies released by the two nuclei. Note 

also that these transformations neglect the kinetic energy, Ekin =  < 𝛹(𝑅, 𝑡)|𝐾�| 𝛹(𝑅, 𝑡) >, of the 

nuclei at the ionization time t = τ [Feuerstein-03-1], where 𝐾� is the operator for the relative 

kinetic energy of the nuclei. We include Ekin in our quantum mechanical simulation by shifting 

the argument in the right-hand sides of (7.1) and (7.2) according to 

𝑌(𝐾𝑡𝑜𝑡, 𝜏) = |𝛹(𝑅(𝐾𝑡𝑜𝑡 − 𝐸𝑘𝑖𝑛), 𝜏)|2 �𝑑𝐸𝑓
(𝑅)

𝑑𝑅
�
−1

,       (7.3) 

where Ktot=K+ Ekin and the R-derivative is taken without including Ekin, i.e., at R(Ktot - Ekin). In 

our numerical calculations below, we find small contributions of Ekin that do not exceed 0.5 eV 

for the oxygen and 0.3 eV for the nitrogen targets. The inclusion of Ekin does not noticeably 

affect the comparison with measured KER spectra discussed in the following sections. 
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 7.4 Results and discussion 

 7.4.1 Oxygen 
The relevant lowest potential curves for O2, O2

+ and O2
2+ molecules, adapted from 

[Lundqvist-96-1, Marian-82, Steinfeld-05], are given in Fig. 7.1. States with gerade symmetry 

are plotted in Fig.7.1(a) as dashed lines (including the ground states of the O2 and O2
+ molecules) 

and ungerade states are given as solid lines. Similarly, states with gerade (dashed lines) and 

ungerade (solid lines) symmetry are shown in Fig.7.1(b) for O2
2+. The pure 1/R Coulomb 

potential, shifted to match the dissociation limit at 39.0 eV, is shown as a dotted line in Fig. 

7.1(b). 

Figure 7.2 shows the measured KER vs. pump-probe delay for the O2 → O+ + O+ (a), O2 

→ O2+ + O+ (b), and O2 → O2+ + O2+ (c) dissociation channels (on the right) alongside the delay 

integrated KER spectra (on the left). The breakup channels can be reached by various pathways. 

An analysis of the intensity-dependent yield (as done in ref. [Jiang-10] for N2
q+) indicates that 

the O2 → O+ + O+ channel involves two photons, the O2 → O2+ + O+ channel three photons, and 

the O2 → O2+ + O2+ channel between 4 and 6 photons. Note that energy conservation alone 

merely requires the absorption of one (two) photon(s) to generate singly-(doubly-) charged 

molecular ions. At the intensities used in the current study, the O2 → O+ + O+ channel can be 

populated both directly and sequentially, where the latter involves intermediate O2
+ states. The 

distinct peaks in Fig. 7.2(a), labeled a-d, can be assigned to the direct population of the O2
2+ 

W3Δu, B3Σu
-, 11Δu, and B3Πg states [Lundqvist-96-1, Voss-04].  
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Figure 7.1. Adiabatic electronic states for (a) neutral O2 and the O2

+ and (b) O2
++ molecular 

ions adapted from [Lundqvist-96-1, Marian-82, Steinfeld-05]. Gerade states are indicated as 
dashed lines and ungerade states as solid lines. The repulsive 1/R Coulomb potential, shifted 
to match the 39.0 eV dissociation limit, is shown as a dotted line. Dissociation limits are 
indicated to the right of the potential curves. 

 

In Fig. 7.2 we compare the experimental data to the classically calculated KER lines for 

the intermediate electronic states  f 4Пg, c4Σu
-, 4Пu, and a4Пu of the O2

+ molecule and  A3Σu
+ and 

11Δu of the O2
2+ molecule (the latter being relevant for the sequential population of triply and 

quadruply charged O2). Note that the angular distributions of the fragment emission can in 

principle help to narrow down the choices for intermediate states. For the measurement on O2, 

however, the limited signal-to-noise ratio did not permit the exclusion of any intermediate states 

based on the fragment angular distributions. For our calculations in Fig. 7.2, we assumed 

dissociation along the α/R Coulomb potentials with potential strengths α= qp in the break-up 

channels O2 → Oq+ + Op+. The KER lines are strikingly different for dissociation paths that 

involve dissociative and bound intermediate states. While dissociative intermediate states (f 4Пg, 
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c4Σu
-, 4Пu, A3Σu

+) yield KER lines which decrease monotonously as functions of the pump-probe 

delay, the bound and predissociating intermediate states, a4Пu and 11Δu, yield KER lines that 

oscillate with periods of 34 and 41 fs, respectively. For the bound and predissociating 

intermediate states, the calculated asymptotic energies are in good agreement with the measured 

spectra, except for the O2 → O2+ + O2+ dissociation channel. Performing separate classical 

calculations using all bound states in Fig.7.1 as intermediate states, we found that none could 

reproduce the dissociative energy limit measured for the O2 → O2+ + O2+ channel.  

 

 

 

 

Figure 7.2  Measured KER spectra as a function 
of the pump-probe delay, τ, (same logarithmic 
color/gray scale for the fragment yield in all 
plots) compared with the classically calculated 
KER curves, for different break-up channels: (a) 
O++O+, (b) O2++O+, and (c) O2++O2+. The delay-
integrated KER spectra are shown on the left. 
The classical calculations were done using the 
dissociative f 4Пg, c4Σu -, and 4Пu and bound 
a4Пu states of O2

+ and dissociative A3Σu
+ and the 

bound 11Δu states of O2
2+. 
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Figure 7.3 (a) Measured KER spectra as a function of pump-probe delay, τ, for the O2 → 
O++O+ break-up channel and (d, g) corresponding quantum mechanical calculations. (b) 
Measured KER spectra for the O2 → O2++O+ channel and (e, h) corresponding quantum 
mechanical calculations. (c) Measured KER spectra for the O2 →O2++O2+ break-up channel 
and (f, i) corresponding quantum mechanical calculations (same logarithmic color/gray scales 
for the fragment yield within each column). The dissociation bands are marked as D (see text). 
The measured KER spectra are taken from Fig. 7.2 for positive delays and shown on a slightly 
different color/grey scale, as indicated. The inset in panel (i) shows the calculated KER for the 
dissociative intermediate state O2

2+(A3Σu
+). 

 

Next, we carried out quantum mechanical calculations, including those intermediate 

states which best reproduced the measured KER limits in our classical calculations in Fig. 

7.2(a,b), with the exception of the O2 → O2+ + O2+ channel. Since, for this particular channel, 

dissociation through bound intermediate states does not reproduce the measured data, we also 

performed a separate calculation including the dissociative A3Σu
+ state of O2

2+, which yields the 

best agreement with the measured KER spectrum in Fig. 7.2(c). Figure 7.3 shows a comparison 
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between the measured KER values for positive delays (left column) and the results from our 

quantum mechanical calculations (middle and right column) for the dissociation channels: O2 → 

O+ + O+ (top), O2 → O2+ + O+ (middle), and O2 → O2+ + O2+ (bottom row). In the calculations for 

the O++O+ dissociation channel, the XUV pump pulse singly ionizes O2 and the XUV probe 

pulse removes a second electron, moving the nuclear wave-packet onto O2
2+ states and causing 

dissociation. Explicitly, the wave-packet is launched from the O2 ground state via a FC transition 

onto the bound potential curve of the O2
+ (a4Пu) state.  

We also calculated KER spectra for dissociation along the 21Σg
+, 11Δg, 11Пg, and B3Пg 

repulsive states of O2
2+ (not shown) and obtained KER spectra that agree equally well with the 

experimental results in Fig. 7.3(a,b,c). Figure 7.3(d) shows the result for the intermediate bound 

O2
+ (a4Пu) state that is Coulomb imaged onto a final 1/R state, while the same intermediate state 

imaged onto the 15Σg
+ state of O2

2+ is considered in Fig. 7.3(g).  For both cases, the positions of 

the energy bands in the KER are in agreement with the measurement. This indicates that 

populating the O2
+ (a4Пu) intermediate state is consistent with the measured dissociation 

dynamics in the O+ + O+ break-up channel. We found equally good agreement with the 

experimental data, with a slightly larger oscillation period, by replacing the O2
+ (a4Пu) 

intermediate state with the O2
+ (A2Пu) state (not shown). Similarly, by substituting the O2

+ (a4Пu) 

intermediate state with either the O2
+ (X2Πg) or O2

+ (b4Σg
-) state, we obtained spectra (not shown) 

with a smaller oscillation period than the calculated spectra in Fig. 7.3(d,g) that, however, agree 

equally well with the experimental data in Fig. 7.3(a). The unambiguous identification of one (or 

several) intermediate states would require experiments with shorter XUV pulses that are able to 

resolve the vibrational motion in the molecular ions. The larger spread in KER for dissociation 

on the O2
2+ (15Σg

+) potential curve (Fig. 7.3(g)) relative to the CE in Fig. 7.3(d) is consistent with 

the steeper decrease with R of the 15Σg
+ curve compared with the 1/R Coulomb curve (cf., 

Fig. 7.1(b)) in the FC region near the equilibrium position of the O2
+ (a4Пu) curve. 

For the dissociation channels O2 → O2+ + O+ and O2 → O2+ + O2+, the KER spectra are 

calculated assuming probe-pulse-induced CE along the 2/R and 4/R curves (Fig. 7.3(e,h,f,i)), 

respectively, and compared with the experimental data for positive delays (Fig. 7.3(b,c)). In 

particular, Fig. 7.3(e) shows the quantum mechanically calculated KER for CE out of an 

intermediate bonding state of the singly-charged O2
+ ion along the dissociation path O2 → 

O2
+(a4Пu) → O 2

3+(2/R) → O 2+ + O+, while in Fig. 7.3(h) dissociation is modeled for an 
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intermediate adiabatic state of the doubly-charged O2
2+ ion, specifically,  O2 → O2

2+(11Δu) → 

O2
3+(2/R) → O 2+ + O+.  For both dissociation paths, the position of the energy band in the 

calculated KER agrees with the experimental data. However, the dissociative branch for delays 

below 120 fs (labeled with “D” in Fig. 7.3(h,i)) is not seen in the experimental data. This track of 

decreasing KER corresponds to dissociation of the most energetic vibrational components of the 

initial wave packet after approximately half a vibrational period (Tvib = 41 fs) on the O2
2+ (11Δu) 

potential curve (cf. Fig. 7.1(b)). In our FC model for the pump process, a significant fraction of 

unbound nuclear states of the O2
2+ (11Δu) potential are populated, since the equilibrium distance 

of the O2 ground state lies well within the repulsive part above the shallow well of the 

O2
2+ (11Δu) potential curve (cf. Fig. 7.1(b)). 

For CE by the probe pulse leading to O2+ + O2+ fragmentation (Fig. 7.3(f,i)), our quantum 

mechanical calculations overestimate the measured KER, indicating that fragmentation along a 

pure Coulomb potential is inappropriate in this case. As for the O2+ + O+ break-up in Fig. 7.3 (h), 

our calculated spectrum in Fig. 7.3(i) shows the dissociative  branch (“D”) emerging from the 

intermediate O2
2+ (11Δu), which is not seen in the experimental data. The wave-packet 

oscillations in our quantum mechanical calculations in Fig. 7.3 are not resolved in the 

experimental data. The periods of these oscillations in the calculated KER are consistent with the 

oscillation periods we obtain directly from the intermediate-state potential energy curves. By 

fitting these potential curves to Morse potentials [Brandsen-03], we obtain periods of ~37 and 

~40 fs, respectively, for the intermediate bound states O2
+(a4Пu) and O2

2+(11Δu), in good 

agreement with the oscillations in Fig. 7.3(d-i). We are confident that CE (along the 4/R potential 

curve) is a realistic assumption and performed simulations with the 21Σg
+, 11Δg, 11Пg, and B3Пg 

repulsive intermediate states of O2
2+ (not shown) replacing the O2

+(a4Пu) and O2
2+(11Δu) states in 

Fig. 7.3 (f,i). However, these simulations did not improve the agreement with the measured 

spectrum in Fig. 7.3(c). Simulations for the dissociative O2
2+(A3Σu

+) state, which gives the 

closest match to the measured KER in the classical calculations (Fig. 7.2(c)) are shown in the 

inset in Fig. 7.3(i). The calculated KER for this intermediate state follows the classically 

calculated KER line. For the O2+ + O2+ break-up, our simulations fail to reproduce the measured 

overall slow decrease in KER for increasing pump-probe delay. 

In view of the limited resolution of the measured spectra, our classical and quantum 

simulations are in good agreement with the experimental data for the O2→O+ + O+ and 
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O2→O+ + O2+ breakup channels. In contrast, for the O2→O2+ + O2+ channel our simulations, both 

classical and quantum, predict larger KERs than the experiment, not only for the intermediate 

states employed to calculate the results shown in Figs. 7.2 (c) and 7.3 (f,i), but also for all other 

intermediate states of O+ and O2+ (not shown) for which we found adiabatic potential curves in 

the literature (cf. [Lundqvist-96-1, Marian-82, Steinfeld-05]). The lack of agreement for this 

particular dissociation channel might in part be related to pump-pulse-induced dipole couplings 

between adiabatic intermediate states of O+ and O2+. The latter effect has been addressed by 

Quaglia et al. [Quaglia-02] in the IR-laser induced dissociation of O4+. Their measured KERs for 

IR-laser peak intensities between 6x1014 and 6×1015 W/cm2 are between 4 and 21 eV smaller 

than predicted by CE at the ground-state equilibrium distance of neutral O2. The decrease of the 

KER due to deviations from pure Coulomb dissociation in their IR experiments is thus 

comparable to the mismatch we find between our measured and simulated results for the 

O2+ + O2+ channel.  It is left to future investigations to address both effects, i) and ii), based on 

new ab-initio calculations  of O+, O2+, and O4+ adiabatic potential curves, allowing for dipole 

couplings of selected electronic states in the electric fields of the XUV pump and probe pulses 

[Magrakvelidze-12-2]. Future investigations should also scrutinize to what degree the 

simultaneous (coherent versus incoherent) population of vibrational wave packets in two (or 

more) electronic states by the pump pulse changes the KER.  

 

 7.4.2 Nitrogen 
Adiabatic electronic potential curves for N2, N2

+, and N2
2+, adapted from [Aoto-06, 

Lundqvist-96-2], are shown in Fig. 7.4. States with gerade symmetry are plotted as dashed lines 

(including the ground states of the N2 and N2
+ molecules in Fig. 7.4(a)) and those with ungerade 

symmetry as solid lines. Similarly, states with gerade (dashed lines) and ungerade (solid lines) 

symmetry are shown in Fig. 7.4(b) for N2
2+. The pure 1/R Coulomb curve, shifted to match the 

dissociation limit at 38.9 eV, is given as a dotted line in Fig. 7.4(b). 

 



99 

 

 

Figure 7.4 Adiabatic electronic states for (a) neutral N2 and the N2
+ and (b) N2

++ molecular 
ions adapted from [Aoto-06, Marian-82, Lundqvist-96-2]. Gerade states are indicated as 
dashed lines and ungerade states as solid lines. The repulsive 1/R Coulomb potential, shifted 
to match the 38.9 eV dissociation limit, is shown as a dotted line. Dissociation limits are 
indicated to the right of the potential curves. 
 

As in section 7.4.1, we assume in our classical simulations that the pump pulse populates 

a selected intermediate state of the molecular ion in a given charge state, out of which the probe 

pulse induces fragmentation. Figure 7.5 shows the measured KER vs. pump-probe delay for the 

dissociation channels N+ + N+, N2+ + N+, and N2+ + N2+ alongside the delay-integrated KER 

spectra. 
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Figure 7.5 Measured KER spectra as a 
function of pump-probe delay, τ, (same 
logarithmic color/gray scale for the 
fragment yield in all plots) compared with 
the classically calculated KER curves, K(τ), 
for different break-up channels (a) N++N+, 
(b) N2++N+, and (c) N2++N2+. The delay-
integrated KER spectra are shown on the 
left. The classical calculations were done for 
the dissociative 22Σu, 22Пu, 32Пu, 32Σg, 42Пu, 
42Σu, and 52Πu and the bound B2Σu

+ states 
of N2

+ and the dissociative a3Пu and bound 
D3Σu

+ states of N2
2+.  

 

 

 

 

 

 

 

 

 

 

 

 

Preliminary data for angular distributions measured for the N+ fragment emission from 

the dissociation of N2
2+ into N+ + N+ indicate predominantly parallel transitions in the energy 

windows 0-5 eV and 10-13 eV and perpendicular transitions for 5-10 eV and 13-20 eV. The 

asymptotic energies and dissociation bands appear to be in agreement with the measured spectra. 

Similar to the O2 molecule, the calculations including bound states B2Σu
+ of N2

+ and D3Σu
+ of 

N2
2+ show oscillations related to the periodic wave packet motion. Their oscillation period is 

about 16 fs. All of the bound states we considered in our calculations for the N+ + N+ dissociation 
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channels (Fig. 7.4(a)) reproduced KERs of approximately 10 eV. The peaks labeled e and f in 

Fig. 7.5(a) are in agreement with a direct population of the N2
2+ A1Πu and d1Σg

+ states [Voss-04, 

Lundqvist-96-2].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 (a) Measured KER spectra as a function of pump-probe delay, τ, for the N2 → 
N++N+ break-up channel and (d, g) corresponding quantum mechanical calculations. (b) 
Measured KER spectra for the N2 → N2++N+ channel and (e, h) corresponding quantum 
mechanical calculations. (c) Measured KER spectra for the N2 →N2++N2+ break-up channel 
and (f, i) corresponding quantum mechanical calculations (same logarithmic color/gray scales 
for the fragment yield within each column). The measured KER spectra are taken from Fig. 
7.5 for positive delays and shown on a different color/grey scale, as indicated. 

 

Figure 7.6 (a-c) shows the measured KER spectra for positive delays compared to the 

results from quantum mechanical calculations (described above) for the dissociation channels 

N2→ N+ + N+ (top), N2 → N2+ + N+ (middle), and N2 → N2+ + N2+ (bottom row). Calculations for 

the N+ + N+ break-up channel (Fig. 7.6(d,g)) were carried out as for the O2 molecule in section A. 
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Starting from the ground state of N2, a nuclear wave-packet is launched on the N2
+ (B2Σu

+) 

potential curve via a FC transition, and dissociation by the probe pulse is modeled as either CE 

(Fig. 7.6(d)) or dissociation in the N2
2+ (D3Пg) electronic state (Fig. 7.6(g)). For separate 

calculations with CE-imaged intermediate states X2Σg
+, A2Пu, or C2Σu

+ of N2
+, we obtained KER 

spectra (not shown) at the same level of (dis)agreement with the experimental data in Fig. 7.6(a) 

as our calculated spectra shown in Fig. 7.6(d). Similarly, if these intermediate states are mapped 

onto the N2
2+ (D3Пg) potential curve, we found similar KER spectra (not shown) that agree 

equally well with the experimental data in Fig. 7.6(a) as our calculated spectra in Fig. 7.6(g). The 

KER band for 1/R CE (Fig. 7.6(d)) tends to exceed the measured KER, while the calculation is in 

better agreement with the measurement for dissociation along the N2
2+ (D3Пg) potential curve 

(Fig. 7.6(g)). More specifically, the calculated KER for CE in Fig. 7.6(d) is ~ 6 eV larger than 

for dissociation on the non-Coulombic repulsive N2
2+ (D3Пg) state in Fig. 7.6(g). This is 

consistent with the potential energy diagrams in Fig. 7.4, where, in the FC region of the 

N2
+ (B2Σu

+) state (roughly between 2 and 2.5 a.u.), the shifted 1/R curve is energetically ~ 5 eV 

higher than the D3Пg state. Note that this discrepancy does not emerge for the O2 molecule, 

where the 1/R curve happens to be energetically comparable to the O2
2+ (15Σg

+) state (cf. Fig. 

7.1(b)) in the FC region of the O2
+(a4Пu) state.  

For N2 → N2+ + N+ and N2 → N2+ + N2+ dissociation the calculated KER plots are shown 

for CE along 2/R and 4/R repulsive curves in Fig. 7.6(e,h) and Fig. 7.6(f,i), respectively, and are 

compared with the experimental spectra for positive pump-probe delays in Fig. 7.6(b,c). For 

these dissociation processes, the calculated KERs are generally in good agreement with the 

experimental data. This is in contrast to the O2 results for the highest-charged dissociation 

channel, O2 → O2+ + O2+, where the calculated KER spectra do not reproduce the measured data. 

Nevertheless, our simulated KERs for N2 → N2+ + N2+ dissociation are clearly larger than the 

center of energy of the measured KERs (Figs. 7.6(c,f,i)). Even though less pronounced than for 

the case of O2 → O2+ + O2+ dissociation, this might in part be due to dissociation along non-

Coulombic potential curves of N4+ [Quaglia-02]. As for the case of O2, we leave it to future 

investigations to address simulations non-Coulomb and dipole-coupling effects, and effects that 

are due to the initial creation by the pump pulse of  nuclear vibrational wave packets on more 

than one adiabatic potential curve. These simulations will likely need to include new independent 
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ab-initio calculations of N+, N2+, and N4+ potential curves [Magrakvelidze-12-1], some of which 

(in particular for N4+) are not available in the literature.  

In our search for relevant intermediate N2
+ electronic states, we included all potential 

curves that are reproduced in Fig. 7.4(a) [Steinfeld-05, Aoto-06, Lundqvist-96-2]. These 

electronic states include most of the states identified in the analysis of the N2
+ vibrational 

structure with He II radiation in the spectral range between 23 and 35 eV by Baltzer et al. 

[Baltzer-92]. With regard to the few electronic states of N2
+ discussed by Baltzer et al. but not 

considered by us, corresponding potential curves are not available to us. We nevertheless are 

confident that none of these states would noticeably further improve the agreement we find 

between our simulated and measured spectra. In the same way as for the dissociation of the O2 

molecule, our quantum mechanical calculations for the dissociation of N2 in Fig. 7.6 predict 

wave-packet oscillations that are not resolved in the experimental data. By fitting the potential 

curves for the intermediate states N2
+ (B2Σu

+) and N2
2+ (D3Σu

+) to Morse potentials [Brandsen-

03], we obtain periods of ~16 and ~15 fs, respectively,  in good agreement with the oscillations 

in Fig. 7.6(d-i). 

 

 7.5 Summary and outlook 
The main features of the measured KER spectra are reproduced by classical calculations, 

implying that following the classical nuclear dynamics on quantum mechanical adiabatic 

potential curves is a valid scheme for approximating the dissociation dynamics of homonuclear 

diatomic molecules (with limited accuracy). In comparison with measured KER spectra, we 

theoretically investigated the dissociation of oxygen molecules via XUV-pumped transitions to 

specific intermediate states of O2
+ or O2

2+. These intermediate states are assumed to fragment 

upon irradiation with the XUV probe pulse. The same was found for the dissociation of nitrogen 

molecules.  

Different dissociation paths were investigated in the quantum mechanical model by 

calculating KER spectra separately for different (intermediate and dissociating) adiabatic 

electronic states of O2
+,2+ and N2

+,2+ molecular ions. These simulated KER spectra are (for most 

cases) compatible with the experimental data. For N+ + N+ dissociative ionization of N2, our 

quantum mechanical calculation predicts different KERs for 1/R CE and dissociation along the 

N2
2+ ( D3Пg) anti-bonding state. In contrast, for O+ + O+ dissociation of O2, we find that CE and 
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dissociation along the O2
2+ (15Σg

+) state yield comparable KERs. Interestingly, for the 

N2→N2+ + N2+ dissociation channel, CE produces KER spectra that agree with the measured 

data, while this is not the case for the O2→O2+ + O2+ dissociation channel (Fig. 7.3(f,i)). Overall, 

taking the limited resolution of the measured spectra into account, our classical and quantum 

simulations are in reasonable agreement with the experiments, with the exception of the 

O2→O2+ + O2+ channel. We hope this lack of agreement will be resolved in the future employing 

quantum mechanical simulations. These simulations should explore additional simulation paths 

by including more than one (dipole-coupled) intermediate state [Magrakvelidze-12-1] and should 

be based on experimental XUV pump – XUV probe data with improved statistics and time 

resolution, taken for a large range of pump-probe delays, that will allow the application of 

additional criteria for the selection of dissociation pathways, such as nuclear oscillation periods 

and revival times.   

The XUV pulse lengths used in the measured spectra are slightly longer than the nuclear 

vibrational periods for O2 and N2 molecular ions and thus prohibited the explicit identification of 

intermediate states and dissociation paths. Future XUV-pump – XUV-probe experiments with 

shorter pulses and higher temporal resolution may allow for better identification of relevant 

intermediate states, based not only on the measured time-averaged KER but also on the time-

resolved nuclear motion within a vibrational period and on QB structures in transiently populated 

electronic states [De-11, Feuerstein-07, Thumm-08, Magrakvelidze-12-1]. This may eventually 

enable the complete identification of dissociation pathways in the XUV-triggered dissociation of 

small molecules. Moreover, initial encouraging attempts at FLASH have been undertaken to 

coincidently detect the emitted photoelectron(s) [Kurka-09]. If successful, this will allow for the 

unambiguous energetic identification of the intermediate state involved within the achieved 

energy resolution.  

In general, XUV pump pulses coherently populate more than one electronic state such 

that the vibrational wavefunction consists of a superposition of vibrational eigenstates in several 

electronic states. It is left to future calculations to address the sensitivity of KER spectra to the 

coupling of adiabatic electronic states in the electric fields of the pump and probe pulses. Higher 

selectivity in the XUV population of electronic states can be achieved by analyzing the data as a 

function of the alignment of the molecules. The current data contain the full information on the 

molecular alignment, but due to limited statistics have not been analyzed to reveal this alignment 



105 

 

dependence. Future experiments with better statistics may be able to examine dissociation 

pathways for selected molecular alignment angles. An approach to increasing the statistics even 

further without increasing the data acquisition times would be to employ non-adiabatic alignment 

[LéPine-07]  and orientation  in intense laser fields [De-09, Sayler-07]  in conjunction with XUV 

pump – XUV probe experiments.  
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Chapter 8 - SUMMARY 
To summarize, we covered basic concepts and molecular orbital theory in chapter 2, 

including approximations used to solve the TDSE. The theoretical models and the calculation 

techniques for solving the TDSE are discussed in chapter 3. 

In chapter 4, we investigated the nuclear dynamics in H2
+ (D2

+) in intense laser fields. In 

particular, the dynamics of the D2
+ molecule for different peak intensities, wavelengths, and 

pedestal lengths of the laser pulses, based on simulated R-dependent QB power spectra was 

studied in chapter 4.1. [Magrakvelidze-09]. By analyzing these spectra in terms of field-dressed 

Floquet potential curves we focused on dissociation by BS and transient binding of the nuclear 

motion by BH. We confirmed that, despite the incoherent CW assumption, the Floquet picture is 

suitable for characterizing the main features of nuclear dynamics, such as BS and BH in few-

cycle laser pulses, except for the longest wavelength we used in simulations (1600 nm). From the 

simulations, we concluded that a peak intensity of about 1014 W/cm2, pulses with a wavelength 

between 200 to 300 nm, and a duration of less than 50 fs (FWHM) are most suitable for 

observing the vibrational trapping of the molecular motion in the 1- ω BH well. At wavelengths 

of 1600 nm, dissociation can proceed via both 1-ω and 3-ω BS, and our simulations indicate 

transient trapping in the 3-ω BH well at the same wavelength.  Existing technologies [Hertel-06, 

Feuerstein-07] can be used to test our findings experimentally. Next, in section 4.2 the 

dissociation dynamics of H2
+ molecule were investigated using the FT method discussed in 

Chapter 3 and compared with the measured data. The excellent match with the measurements led 

us to believe that the FT method works for small diatomic molecules (Chapter 3.4). The last part 

of the chapter (Chapter 4.4.) discussed the localization of the electron in the H2
+ molecular ion 

using elliptically polarized long IR fields and coincidence techniques. The methods used so far 

for investigating the localization involve either two color [Ray-09, Wu-13-1] or carrier-envelope-

phase-stabilized short IR pulses [Kling-06, Kremer-09, Znakovskaya-12]. The current 

experimental technique shatters the belief that the localization of the electron cannot be 

measured using a single wavelength long pulse. 

We studied the dissociation dynamics of the O2
+ molecular ion in IR fields in Chapter 5. 

Here the method for identifying adiabatic electronic states involved in the dissociation of small 

molecules was introduced. First, the adiabatic potential curves and electric dipole-coupling 

matrix elements are calculated with the quantum chemistry code GAMESS. Next, the nuclear 
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probability-density spectra as a function of time and QB frequency are calculated and compared 

to the measured data for one molecular potential curve at a time. Finally, after identifying the 

relevant electronic states, laser-induced dipole-coupling are included in improved wave packet 

propagation calculations, and the resulting KER spectra are again compared with experimental 

data. After performing the calculations for different combinations of electronic states of O2
+, we 

concluded that the a4Пu and f4Пg states are main players in the dissociation dynamics, as the 

calculated and measured KER are similar with matching oscillation periods and revival times. 

In chapter 6, we investigated the dissociation dynamics of noble gas dimers in two-color 

IR pump-and probe fields. The “delay gap” on the positive side of the KER spectra, observed in 

the Ar2
+ dimer, is also present for He2

+ , Ne2
+ , Kr2

+ and Xe2
+ dimers. This striking feature can be 

explained by a simple model where the wave packet is coupled by two-color laser pulses on 

I(1/2)u (or 2Σu
+) and II(1/2)g (or 2Σg

+) states of Ng2
+. Comparing pump-probe-pulse delay-

dependent KER spectra for different noble gas dimer cations, we quantitatively discussed 

quantum mechanical versus classical aspects of the nuclear vibrational motion as a function of 

the nuclear mass. In addition, based on a study of the variances, as the mass of the system 

increases, the more it resembles a classical particle, since the wave packet spreads less for the 

heavier dimers.  

Chapter 7 focused on diatomic molecules in XUV laser pulses. We traced the 

femtosecond nuclear-wave-packet dynamics in ionic states of oxygen and nitrogen molecules by 

comparing measured KER spectra with classical and quantum mechanical simulations. 

Experiments were done at the free-electron laser in Hamburg (FLASH) using 38-eV XUV-

pump–XUV-probe. The nuclear dynamics were monitored via the detection of coincident ionic 

fragments using COLTRIMS and a split-mirror setup to generate the pump and probe pulses. 

Using our classically and quantum mechanically calculated KER spectra, we identified electronic 

states of the molecular ions that are populated by ionization of the neutral molecule. For specific 

fragment charge states, this comparison allowed us to assess the relevance of specific 

dissociation paths. 

For the future there are different steps to be taken for improvement of our current 

quantum model that is used for KER calculations. The model does not include more than two 

electronic states, nor molecular rotations. A next step would be to implement three and more 

electronic states in the calculations. Including molecular rotation in the current code without 
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doing full ab-initio calculations [Winter-10] will be more challenging.  The study of this project 

only included diatomic molecules in IR or UV fields. It would be alluring to extend the research 

to heavier molecules with more than one active degree of freedom that require potential surface 

calculations.  
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APPENDICES 

Appendix A - Abbreviations  

A list of the abbreviations used in this work is given below. 

 
ADK   –  Ammosov-Delone-Krainov 
AO    – Atomic orbital 
BH    – Bond hardening 
BO   –  Born-Oppenheimer 
BS    – Bond softening 
CI    –  Configuration interaction 
CE   –  Coulomb explosion 
CEP   – Carrier envelope phase 
CN    –  Crank-Nicolson 
COLTRIMS   –  COL
CREI    –  Charge-resonance enhanced ionization 

d target recoil ion momentum spectroscopy 

CSF    –  Configuration state function 
CW   – Continuous wave  
FC    –  Frank-Condon 
FLASH  –  Free-electron las
FWHM   –  Full width half maximum 

er in Hamburg  

GAMESS  –  General atomic and molecular electronic structure system 
GTO   –  Gaussian-type orbitals 
HF   –  Hartree-Fock  
IR   – Infra-red  
KER    – Kinetic energy release 
MCSCF   –  Multiconfiguration self-consistent field 
MO    – Molecular orbital 
NIR    –  Near infra-red 
SCF   –  Self-consistent field 
STO    –  Slater type orbitals 
TDSE   – Time dependent Schrödinger equation 
QB    –  Quantum beat 
VD   –  Virtual detector 
VMI   – Velocity map imaging  
XUV   –  Extreme ultra-violet 
 



123 

 

Appendix B - Reduced mass 

If the masses of the atoms in a diatomic molecule are m1 and m2, the reduced mass can be 

calculated as follows  

𝜇 =
𝑚1𝑚2

𝑚1 + 𝑚2
 

If 𝑚1 = 𝑚2 = 𝑚 (homonuclear diatomic molecules). 

𝜇 =
𝑚
2

=
1
2

×
𝐴𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 ( 𝑔

𝑚𝑜𝑙)
𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜′𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑚𝑜𝑙−1)

×
1

9.10938 x10−28 𝑔(𝑎.𝑢. )−1 

 

𝜇(𝑎.𝑢. ) = 𝐴𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠 �
𝑔
𝑚𝑜𝑙

� ×  911.44453  

 

 

Molecule Atomic mass (g/mol) Reduced mass (a.u.) 

H2 (H) 1.0079 918.645 

D2 (D) 2.0158 1835.2415 

He2 (He) 4.0026 3648.148 

N2 (N) 14.0067 12766.341 

O2 (O) 15.9994 14582.566 

Ne2 (Ne) 20.1797 18392.677 

Ar2 (Ar) 39.948 36410.386 

Kr2 (Kr) 83.798 76377.229 

Xe2 (Xe) 131.293 119666.287 
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Appendix C - Single-curve-calculation code 

This appendix describes the source code used in single-cation curve calculations. It is 

written in FORTRAN-90. The code has a main program that uses several subroutines and 

functions that are divided into different files.  

 
 
Module Description 
tdse.f90 The main program.  
progvars.f90 Defining program variables and default values. 
wfMath.f90 Math-related subroutines. 
wfPot.f90 Reading in potential curves. 
params.f90 Reads input parameter values. 
CN.f90 Crank–Nicolson propagation scheme. 
FT.f90 FT method propagation scheme. 
adk.f90 ADK depletion of ground state. 
fft.f90 Fast Fourier transform related subroutines. 
diag.f90 One dimensional diagonalization soubroutines. 
debug.f90 Debug related. 
fileswin.f90 Reading-writing input-output files. 
strings.f90 String manipulation subroutines. 
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 C.1 Main Program (tdse.f90) 
program main 
    use progvars 
    implicit none     
    molecule      =  "He2"; 5 
    inputFolder   =  "input\";  
    curve1        =  "He2_pot_ground.txt"    
    outputFolder  =  "output\";      
    curve2        = "He2p-Sig-u-Morse.txt"     
    call RunOnce(); 10 
    print *, 'program completed' 
end program main 
!------------------------------------------------------------------------------------------------ 
subroutine RunOnce() 
    use progvars 15 
    use files  
    implicit none     
    call EnsureFolderExists(outputFolder);     
    call init(); print *, 'init completed';     
    call find_groundstate_byenergy(); print *, 'find_groundstate completed';     20 
    !here  at this point psi contains ground state 
    call calculate_energy(); print *, 'calculate_energy completed';     
    ! call Diagonalize(); 
    useADKpump  =  .false. 
    if (useADKpump.eq. .true.) then 25 
       call Apply_ADK(); 
    endif         
    call run(); print *, 'run completed';     
    call cleanup(); 
end subroutine RunOnce 30 
!_______________________________input parameters____________________________ 
subroutine init  
    use progvars 
    use strings; 
    use wfMath 35 
    use wfPot 
    implicit none 
    integer :: nloop       
    real*8  :: widthz,pz     
    select case (trim(molecule)) 40 
        case("D2") 
            mass = 1835.241507d0; nz = 1024;  deltaz  = 0.05d0; 
        case("He2")    
            mass = 3648.148d0; nz =8192;  deltaz  = 0.01d0  
    end select    45 
    maxt    = 124024.34d0 ! 3ps                 ! maximum time     
    deltat  = 1.0d0           ! delta time  
    widthz  = 3.0d0                             ! width of the gaussian 
    minz    = 0.d0                              ! minimum z in a.u. 
    maxz    = nz * deltaz                       ! maximum z in a.u.         50 
    centerz = 7.d0                              ! center of the gaussian     
    nt      = NINT(maxt/deltat)                 ! time steps      
    pz      = 0.d0                              ! not used currently     
    !_____________________________FFT section________________________ 
    deltafft    =   20.d0* deltat               ! time step for FFT 55 
    nfft        =   NINT(maxt/deltafft)         ! no of steps for FFT     
    !_________________________absorber parameters___________________________ 
    fadewidth    =15.d0                 ! the width of the absorber in a.u. 
    fadestrength = 0.1d0  !the maximum heigth of the neg. imaginary potential   
    includeAbsorber = .true.                    ! switch for absorber         60 
    !_________________________E FIELD section_______________________________ 
    Eo      = 0.1d0                             ! field amplitude 
    Eomega  = 0.057d0                           ! laser frequency  
    Ephi    = 0.d0                              ! carrier envelope phase 
    Ewidth  = 120.d0                            ! width of the envelope 65 
    Eto     = 1000.d0                           ! ecentl.of the Gaus. envelope 
    includeField = .false.                      ! switch for efield        
    pumpEo         =  0.053 !1E14   
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    pumpEwidth     =  3305.8d0 !80fs  
    pumpEomega     =  0.057d0 70 
    pumpEphi       =  0.0d0    
    !_____________________________Printing & Plotting Filters_______________ 
    printFilter = nz 
    maxFrequencyFilter = 2000 
    printInterval = 200      75 
    ! print filter upper boundary check 
    if(printFilter > nz) then   
        printFilter = nz     
    end if         
    call allocateArrays(); 80 
    do nloop = 1,nz 
        Z(nloop) = minz+ (nloop)* deltaz 
        P(nloop) = 2*pi*(nloop-(nz/2)-1)/(maxz-minz);    
    end do         
    call wfmath_gaussian(widthz,pz)         85 
    !call setabsorber_left(fadewidth, fadestrength) !/deltat 
    call setabsorber_right(fadewidth, fadestrength)     
    call printpsi(trim(concat(outputFolder,"psi.dat")))     
    call potentials_init(nz)               !initialize potential arrays      
    call read_potential();         90 
end subroutine init 
!------------------------------------------------------------------------------------------------ 
subroutine read_potential() 
    use progvars; 
    use strings; 95 
    use wfPot;     
    call potentials_readfromfile_activate(trim(concat(inputFolder,curve1)),1)     
    call potentials_readfromfile_activate(trim(concat(inputFolder,curve2)),2); 
end subroutine read_potential 
!------------------------------------------------------------------------------------------------ 100 
subroutine Diagonalize() 
    use progvars; 
    use strings; 
    use wfMath; 
    use wfPot; 105 
    use diag; 
    implicit none;     
    integer nstate; 
    real*8, pointer     :: potarray(:); 
    print *,"--------------------------------------" 110 
    print *,"" 
    print *,"-> Diagonalizing the potential of gerade curve <-"     
    call diag_init(nz,deltaz,mass)      ! needed for diagon. of the potential 
    nullify(states%energyarr)           ! ensure proper disas. of the new pointers 
    nullify(states%wavefunctions)     115 
    call potentials_setactive(2);                            
    call wfPot_FormattedPotentialHC(potarray,curve2); 
    open(unit=111,file=trim(concat(outputFolder,"fpot.dat")),status="replace", 
         access="sequential",recl=1024)      
    do nstate=1, nz 120 
        write(111,'(E13.3,E12.5)') (nstate*deltaz), potarray(nstate);         
    enddo 
    close(111)    
    call diag_diagonalize(potarray, states)               !find the bound states     
    print *,"Number of bound states: ",states%numbound    !number of bound states     125 
    call diag_plot(states, trim(concat(outputFolder,"test"))) 
    open(unit=111,file=trim(concat(outputFolder,"fc_factors.dat")),status="replace", 
    access="sequential", recl=1024)  
    write(111,'(A6,2A12)') "State","Energy","FC-Factor" 
    do nstate=1, states%numbound                                       130 
      write(111,'(I6,2E12.4)') nstate,states%energyarr(nstate), & 
            cdabs(wfmath_overlap(psi(:),states%wavefunctions(nstate,:)))**2 
    enddo 
    write(111,*) 
    close(111)     135 
    call diag_release(states); 
    call diag_done(); 
end subroutine Diagonalize 
!_______________________________run____________________________ 
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subroutine run     140 
    use progvars 
    use strings; 
    use wfMath 
    use wfPot 
    use fft; 145 
    implicit none     
    real*8          :: etime, energy1, efield = 0.d0, mom 
    complex*16      :: pos,var, mom1, mom2, varP,varMom,  rdeltat 
    integer         :: fftloop,tloop, timestep , estep 
    logical         :: ufield  = .true.     150 
    call MethodInit()     
    !init fft arrays for KER 
    call fftInit(nz,deltaz,mass);     
    rdeltat         = CMPLX(deltat,0.d0)     
    call potentials_setactive(2); 155 
    open(unit=102,file=trim(concat(outputFolder,"wfunc.dat")),status="replace", 
         access="sequential",recl=1024) 
    open(unit=103,file=trim(concat(outputFolder,"efield.dat")),status="replace", 
         access="sequential",recl=1024) 
    open(unit=104,file=trim(concat(outputFolder,"position.dat")),status="replace",  160 
         access="sequential",recl=1024) 
    open(unit=105,file=trim(concat(outputFolder,"momentum.dat")),status="replace", 
         access="sequential",recl=1024) 
    open(unit=106,file=trim(concat(outputFolder,"XVariance.dat")),status="replace", 
         access="sequential", recl=1024) 165 
    open(unit=108,file=trim(concat(outputFolder,"PXproduct.dat")),status="replace", 
         access="sequential", recl=1024) 
    open(unit=109,file=trim(concat(outputfolder,"MomVariance.dat")),status="replace", 
         access="sequential", recl=1024) 
    timestep = NINT(deltafft / deltat)     170 
    do fftloop = 1 , nfft    
        !print *,  fftloop*timestep         
        do tloop = 1 , timestep           
            fftvalues = czero;             
            estep =  ((fftloop-1)*timestep + tloop); 175 
            print *,  estep ; 
            etime   =  estep * deltat;             
            if(includeField .eq. .true.) then 
                efield  = wfmath_efield(etime)                 
            else 180 
                efield  = 0.d0     
            end if              
            call propagate(rdeltat,efield, ufield, includeAbsorber)            
            pos     = wmath_pos(psi) 
            write(104,'(E13.4E3, E13.4E3)') etime*0.0242, Real(pos)             185 
            var = wmath_var(psi) 
            write(106,'(E13.4E3, E13.4E3)') etime*0.0242, Real(var)             
            call fftForward(psi); 
            mom = wfmath_momentum3(fftvalues);   
            write(105,'(E13.4E3, E13.4E3)') etime, mom             190 
            varMom = wmath_varMom(fftvalues)/((nz *deltaz )**2) 
            write(109,'(E13.4E3, E13.4E3)') etime*0.0242, Real(varMom)             
            write(108,'(E13.4E3, E13.4E3)') etime*0.0242, sqrt(abs(Real(var*varMom)))              
            ufield = includeField 
            if(mod(estep,printInterval) .eq. 0) then 195 
                write(102,'(E13.4E3,$)')  cdabs(psi(1:printFilter))**2 
                write(102,*) 
                write(103,'(E13.4E3 ,E13.4E3)') etime, efield 
            end if 
        end do    200 
    end do 
    close(102) 
    close(103) 
    close(104) 
    close(105) 205 
    close(106) 
    close(108) 
    close(109)     
    call MethodCleanup() 
    call fftCleanup(); 210 
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end subroutine run 
!_______________________________find_groundstate____________________________ 
subroutine find_groundstate_byenergy 
    use progvars 
    use strings 215 
    use wfMath 
    use wfPot 
    implicit none      
    complex*16                                 :: energy1,energy2 
    real*8                                     :: overlap 220 
    !The preset precision goal 
    real*8                                     :: prec = 1.d-11    
    !Test convergence by default every 2nd propagation step 
    integer                                    :: ctest = 2 
    !The preset maximum iteration to find ground state 225 
    integer                                    :: maxiter = 10000000     
    complex*16                                 :: timestep 
    integer                                    :: loop 
    logical                                    :: ufield  = .true. 
    !wavefunction array to check convergence 230 
    complex*16, pointer, dimension(:)          :: psiwork     
    call MethodInit()     
    !Create a work array of same shape as psiin 
    allocate(psiwork(size(psi)),stat=iAllocStatus)  
    if (iAllocStatus /= 0) then 235 
      print *,"ERROR: can't allocate PSIWORK array" 
      stop 
    endif 
    print *,"TOOLS_GROUNDSTATE: PSIWORK wavefunction array allocated"         
    call potentials_setactive(1);     240 
    psiwork = 0.d0 
    timestep = -ii* deltat 
    do loop = 1 , maxiter 
        call propagate(timestep,0.d0, ufield, .false.) 
        call wfmath_normalize(psi) 245 
        if (mod(loop,ctest).eq.0) then               ! test convergence only every ctest loop 
            energy1 = wfmath_energy(psi); 
            energy2 = wfmath_energy(psiwork); 
            overlap = abs(real(energy1-energy2));             
            print *, loop, real(overlap);                     250 
            if (overlap.lt.prec) then    
                ! found ground state .. yeah.... 
                print *, "found groundstate" 
                exit 
            end if 255 
            psiwork = psi 
        end if         
        ufield = .false. !calculate XY only first time for CN Method,not used in any other method 
    end do 
    if(loop.gt.maxiter) then 260 
        print *, "groundstate not found" 
        stop 
    end if 
    deallocate(psiwork) 
    call MethodCleanup()     265 
end subroutine find_groundstate_byenergy 
!------------------------------------------------------------------------------------------------ 
subroutine printpsi(filename) 
    use progvars 
    implicit none 270 
    character(len=*), intent(in) :: filename 
    integer :: nloop     
open(unit=101,file=filename,status="replace",access="sequential",recl=1024)      
    do nloop=1, nz              
        write(101,'(E13.6E3,4x,E13.6E3)') (nloop*deltaz), real(psi(nloop)) 275 
    enddo 
    close(101) 
end subroutine  
!------------------------------------------------------------------------------------------------ 
subroutine calculate_energy 280 
    use progvars 
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    use strings 
    use wfMath 
    implicit none     
    complex*16 energy;     285 
    energy = wfmath_energy(psi);     
    print *, real(energy);    
open(unit=129,file=trim(concat(outputFolder,"groundstate_energy.dat")),status="replace",access="s
equential",recl=1024) 
    write(129,'(E13.6)') real(energy); 290 
    close(129) 
end subroutine calculate_energy 
!_________________________________Absorber________________________ 
subroutine setabsorber_left(width,strength) 
    use progvars 295 
    implicit none 
    ! sets the absorber (optical potential) on the left side of the grid (min z-coordinate) 
    real*8, intent(in) :: width, strength 
    integer            :: n 
    real*8             :: maskvalue 300 
    do n=1, nint(width / deltaz) 
        maskvalue = (((width - (n-1)*deltaz) / width)**2) * strength 
        maskvalue = exp(-maskvalue) 
        absorber(n) = absorber(n) * maskvalue        
    enddo 305 
end subroutine setabsorber_left 
!------------------------------------------------------------------------------------------------ 
subroutine setabsorber_right(width,strength) 
    use progvars 
    implicit none     310 
    ! sets the absorber (optical potential) on the right side of the grid (max z-coordinate) 
    real*8, intent(in) :: width, strength 
    integer            :: n 
    real*8             :: maskvalue 
    do n=1, nint(width / deltaz) 315 
        maskvalue = (((width - (n-1)*deltaz) / width)**2) * strength 
        maskvalue = exp(-maskvalue) 
        absorber(nz + 1 - n) = absorber(nz + 1 - n) * maskvalue 
    enddo 
end subroutine setabsorber_right 320 
!------------------------------------------------------------------------------------------------ 
subroutine setabsorber(width,strength) 
    ! sets the absorber (optical potential) on both sides of the potential 
    real*8, intent(in) :: width, strength 
    call setabsorber_left(width,strength) 325 
    call setabsorber_right(width,strength)     
end subroutine setabsorber 
!_________________________________Allocate_________________________ 
subroutine allocateArrays     
    use progvars 330 
    implicit none 
    integer i,j 
    allocate(Z(nz),P(nz), stat = iAllocStatus) 
    if (iAllocStatus /= 0) then 
        print *,"ERROR: can't allocate position vector Z or P" 335 
        stop 
    endif     
    allocate(psi(nz), psitotal(nz),  stat = iAllocStatus) 
    if (iAllocStatus /= 0) then 
        print *,"ERROR: can't allocate wave function psi" 340 
        stop 
    endif 
    allocate(absorber(nz), stat = iAllocStatus) 
    if (iAllocStatus /= 0) then 
        print *,"ERROR: can't allocate Vector absorber" 345 
        stop 
    endif     
    allocate(fftarray(nz,nfft), stat = iAllocStatus) 
    if (iAllocStatus /= 0) then 
        print *,"ERROR: can't allocate Array FFT" 350 
        stop 
    endif     
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    allocate(fftinput(nfft), stat = iAllocStatus) 
    if (iAllocStatus /= 0) then 
        print *,"ERROR: can't allocate Array FFT Input" 355 
        stop 
    endif     
    psi         =   czero 
    psitotal    =   czero 
    absorber    =   1.d0 360 
    fftarray    =   0.d0     
end subroutine 
!_________________________clean___________________________ 
subroutine cleanup      
    use progvars 365 
    use wfPot 
    use fft 
    implicit none     
    deallocate(Z) 
    deallocate(P) 370 
    deallocate(psi) 
    deallocate(psitotal) 
    deallocate(absorber) 
    deallocate(fftarray) 
    deallocate(fftinput) 375 
    call potentials_done()     
end subroutine 
!------------------------------------------------------------------------------------------------ 
subroutine MethodInit() 
    use progvars 380 
    use CN 
    use FT 
    implicit none     
    select case(useMethod) 
        case (CNMethod)             385 
            call CNInit() 
        case (FTMethod)             
            call FTInit() 
    end select 
end subroutine  390 
!------------------------------------------------------------------------------------------------ 
subroutine MethodCleanup() 
    use progvars 
    use CN 
    use FT 395 
    implicit none     
    select case(useMethod) 
        case (CNMethod)             
            call CNCleanup() 
        case (FTMethod)             400 
            call FTCleanup() 
    end select 
end subroutine  
!------------------------------------------------------------------------------------------------ 
subroutine propagate(timestep,efield, useefield, useabsorber)     405 
    use progvars 
    use wfMath 
    use CN 
    use FT 
    implicit none 410 
    complex*16, intent(in)                  :: timestep  
    real*8, intent(in)                      :: efield  
    logical, intent(in)                     :: useefield 
    logical, intent(in)                     :: useabsorber 
    select case(useMethod) 415 
        case (CNMethod)             
            call CNPropagate(psi, timestep, efield, useabsorber)                         
        case (FTMethod)             
            call FTPropagate(timestep,efield, useefield, useabsorber) 
    end select 420 
end subroutine 
!------------------------------------------------------------------------------------------------ 
subroutine Apply_ADK() 
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        use progvars 
        use adk 425 
        use wfPot 
        use wfMath 
        implicit none   
        real*8          :: pumpint; ! pump pulse intensity to be calculated from pumpEo.         
        pumpint = pumpEo**2;         430 
        if(useADKpump .eq. .true.) then 
            print *,"MESSAGE : ADK rate dependent instantaneous ionization "             
 
            !use psitotal temporarly for work 
            !first we need a copy of the original ground state wave function 435 
            psitotal = psi 
 
            !ADK deplete this state 
            call adk_deplete(psitotal, pot_curve1, pot_curve2, 1.d0, pumpint,  
                              pumpEwidth, pumpEomega, pumpEphi) 440 
 
            !subtract the final ground state from the original - the new excited state 
            psi = psi- psitotal 
 
            call wfmath_normalize(psi)    445 
        end if     
end subroutine Apply_ADK 
 

 C.2 Module defining variables (progvars.f90) 
module progvars 
    implicit none 
    type :: TEnergies            ! declare a type array for bound state energies 
     integer   :: numbound     ! number of bound states 5 
     real*8, pointer :: energyarr(:) ! the array with the bound energies 
    end type 
    type :: TStates              ! declare a type array for bound wave functions 
        integer  :: numbound     ! number of bound states, identical to TEnergies 
        real*8, pointer :: energyarr(:) ! the array with the bound energies 10 
        complex*16, pointer :: wavefunctions(:,:)! the array with the wave functions 
    end type 
    ! Variable definitions 
    real*8      :: mass         ! particle mass  
    real*8      :: maxz         ! maximum x 15 
    real*8      :: minz         ! minimum x    
    real*8      :: deltaz       ! step size in x direction 
     
    real*8      :: centerz      ! initial position in gaussian     
    real*8      :: maxt         ! maximum time 20 
    real*8      :: deltat       ! delta time      
    integer     :: nz           ! no of steps in x direction (no of points in the grid) 
    integer     :: nt           ! no of time steps     
    real*8      :: deltafft     ! time step for FFT 
    integer     :: nfft         ! no of time/frequency steps for FFT             25 
    real*8, pointer  :: Z(:), P(:) 
    real*8, pointer  :: potential(:)     
    complex*16,  pointer :: psi(:)        ! initial wavefunction array    
    complex*16, allocatable :: psitotal(:)     
    complex*16  :: ii  = (0.d0,1.d0)       ! complex number i 30 
    complex*16  :: czero  = (0.d0,0.d0) 
    real*8      :: pi = 3.141592653589793238462643d0     
    !_________________absorber section____________________________________________________ 
    real*8  :: fadewidth                    ! the width of the absorber for the electrons 
    real*8  :: fadestrength                 ! the strength of the absorbing border potential 35 
    real*8, pointer :: absorber(:)          ! absorber potential 
    logical :: includeAbsorber              ! switch for using absorber 
    !_________________________E FIELD section_______________________________________________ 
    real*8  :: Eo                           ! field amplitude 
    real*8  :: Eomega                       ! laser frequency  40 
    real*8  :: Ephi                         ! carrier envelope phase 
    real*8  :: Ewidth                       ! width of the envelope 
    real*8  :: Eto                          ! center of the gaussian envelope 
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    logical :: includeField                 ! switch for using field     
    !_________________________Pump Section_______________________________________________ 45 
    real*8              :: pumpEo     !(pulseint) 
    real*8              :: pumpEwidth !(pulselength) 
    real*8              :: pumpEomega !(pulseomega) 
    real*8              :: pumpEphi   !(pulsephase) 
     50 
    !_________________________FFT Section__________________________________________________ 
    real*8,  pointer    :: fftarray(:,:)    ! array for FFT 
    complex*16, pointer :: fftinput(:)      ! the complex version for one R parameter 
     
    !______________________Diagonalization Section_____________________________________ 55 
    type(TStates)     :: states  
    ! object with wave functions and energies from diagonalization     
 
    !______________________ Memory allocation_____________________________________________ 
    integer :: iAllocStatus     60 
    !_____________________ Printing & Plotting Filters______________________________________ 
    integer :: printFilter  
    integer :: maxFrequencyFilter 
    integer :: printInterval     
    real*8  :: frequencyInTHZ = 6579.7d0     65 
    !______________________Method Selection________________________________________     
    character(len=2),parameter   :: CNMethod  = "CN"        ! Crank-Nicholson method     
    character(len=2),parameter   :: FTMethod  = "FT"        ! FFT method     
    character(len=2)   :: useMethod  = CNMethod 
    !character(len=2)   :: useMethod  = FTMethod       70 
    !______________________ Output selection ____________________________________________ 
    character(len=120) :: inputFolder; 
    character(len=120) :: outputFolder; 
    character(len=120) :: curve1, curve2; 
    character(len=10)  :: molecule   75 
    !_______________________ ADK Section ___________________________________________________ 
    logical             :: useADKpump   ! =  .true.   
    logical             :: Powerspectra  
end module progvars 
 
 
 

 C.3 Module Wave Function (wfMath.f90) 
module wfmath 5 
  implicit none   
   contains    
   !______________________definind initial wave function_________________________     
subroutine wfmath_gaussian(widthz,pz) 
    use progvars 10 
    implicit none     
    real*8, intent(in)                      :: widthz              ! the width of the wavepacket                 
    real*8, intent(in)                      :: pz                  ! momentum 
    integer                                 :: nR 
    real*8                                  :: rvalue 15 
    complex*16                              :: cvalue 
    real*8                                  :: z2 
    z2 = minz + deltaz 
    do nR=1, nz 
      rvalue = exp( -((z2-centerz)/widthz)**2 /2 )/ (2*pi*widthz) 20 
      cvalue = cdexp( cmplx(0.0,1.0)*(pz*z2))  
      psi(nR) = rvalue * cvalue 
      z2 = z2 + deltaz             ! next grid position in x-direction 
    enddo 
    call wfmath_normalize(psi) 25 
end subroutine wfmath_gaussian 
!_______________________________overlap__________________________________________________ 
  function wfmath_overlap(wf1,wf2,centerz1,widthz1) result(overlap) 
    use progvars 
    implicit none     30 
    ! calculating the overlap of the two given wf's inside the optional given integration areas 
    ! algorithm can be improved by a better integration method! 
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    complex*16, intent(in), dimension(:) :: wf1, wf2     
    real*8, intent(in), optional         :: centerz1  ! the center of the integration window 
    real*8, intent(in), optional         :: widthz1   ! the full length of the integration window     35 
    complex*16                           :: overlap 
    integer                              :: nzstart, nzend    ! the integration grid boundary 
 
    !initial function result in case of out-of-integration-area 
    overlap = cmplx(0.d0,0.d0)    40 
    if (present(centerz1).and.present(widthz1)) then 
      ! the integration boundary in x-grid space 
      nzstart = int((centerz1 - minz - widthz1/2) / deltaz) + 1 
      nzend   = int((centerz1 - minz + widthz1/2) / deltaz) + 1     
      if (nzstart.gt.nz) return       ! get out - we run out on the right side 45 
      if (nzend.lt.1) return          ! get out - we run out on the left side 
      if (nzstart.lt.1) nzstart = 1   ! correct for left side out of integration area 
      if (nzend.gt.nz) nzend = nz     ! correct for right side 
    else 
      nzstart = 1 50 
      nzend   = nz 
    endif 
    ! calculate the quantum mechanical overlap of the two wavefunctions     
    overlap = sum(conjg(wf1(nzstart:nzend))*wf2(nzstart:nzend))*deltaz 
    return 55 
end function wfmath_overlap   
!_________________________________Energy____________________________________________ 
function wfmath_energy(wf) result(energy) 
    ! calculates the energy corresponding to the given wavefunction: E=<Psi|H|Psi> 
    ! using 5-point formula for H=-1/(2*mass) * (d^2/dx^2 + d^2/dz^2) + V  60 
    ! 5-point formula: f" = 1/(12 Delta^2) * (- f_-2 + 16f_-1 - 30f_0 + 16f_1 - f_2) 
    use progvars  
    implicit none 
    complex*16, intent(in), dimension(:) :: wf  ! the input WF we calculate the energy from     
    complex*16                           :: energy! the functional result for the energy 65 
    complex*16                           :: epot, ekinz   ! contributions to the total energy 
    ! splitting operator into sum: E=-1/2m <Psi|pz^2|Psi> + <Psi|V|Psi> 
    ! First step: Potential energy Epot = <Psi|V|Psi> 
    epot = sum(conjg(wf)*wf*potential)*deltaz 
    ! Second: kinetic energy     70 
    ekinz = - 1 / (24*mass) / deltaz * &  
      sum(conjg(wf(3:nz-2)) * & 
      ( -wf(1:nz-4)+16*wf(2:nz-3)-30*wf(3:nz-2)+16*wf(4:nz-1)-wf(5:nz) ) ) 
    ! Third: return the total (sum) energy 
    energy = epot + ekinz 75 
    return 
end function wfmath_energy 
!________________________________position______________________________________________________ 
function wmath_pos(wf) result(pos) 
    !calculates the expectation value of the position corresponding to the given wavefunction: 80 
    !pos=<Psi|x|Psi> 
    use progvars  
    implicit none 
    !the input wavefunction we calculate the energy from 
    complex*16, intent(in), dimension(:) :: wf  85 
    complex*16                           :: pos  
    pos=sum(conjg(wf)*wf*Z)*deltaz 
    return 
end function wmath_pos 
 90 
!________________________________momentum_____________________________________________________ 
 function wfmath_momentum3(wf) result(momentum) 
    use progvars     
    complex*16, intent(inout), dimension(:) :: wf 
    real*8                                  :: momentum, pmax, deltap     95 
    complex*16                              :: mom, norm      
    pmax   = 1.d0/(2.d0*deltaz)       ! maximum momentum of the grid (see Nyquist theorem) 
    deltap = 2.d0*pmax / nz           ! the momentum resolution 
    norm= sum(conjg(wf)*wf*deltap) 
    mom = sum(conjg(wf)*wf*P)*deltap/norm     100 
    momentum = Real(mom); 
 return 
end function wfmath_momentum3  
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!________________________________VarianceP______________________________________________________ 
 105 
function wmath_varMom(wf) result(var) 
    use progvars  
    implicit none 
    !the input wavefunction we calculate the energy from 
    complex*16, intent(in), dimension(:) :: wf 110 
    complex*16                           :: var 
    real*8                               :: pmax, deltap    
    pmax   = 1.d0/(2.d0*deltaz)          ! maximum momentum of the grid (see Nyquist theorem) 
    deltap = 2.d0*pmax / nz              ! the momentum resolution     
    var= sum(conjg(wf)*wf*P**2)*deltap-(sum(conjg(wf)*wf*P)*deltap)**2/(sum(conjg(wf)*wf*deltap))     115 
    return 
end function wmath_varMom 
!________________________________VarianceX______________________________________________________ 
function wmath_var(wf) result(var) 
    ! calculates the varianceof the position : var = <x^2>-<x>^2 120 
    use progvars  
    implicit none 
    !the input wavefunction we calculate the energy from 
    complex*16, intent(in), dimension(:) :: wf 
    complex*16                           :: var  125 
    var=sum(conjg(wf)*wf*Z**2)*deltaz-(sum(conjg(wf)*wf*Z)*deltaz)**2 
    return 
end function wmath_var 
!_________________________________Normalize______________________________________________________ 
subroutine wfmath_normalize(wf) 130 
    ! nomalizing the given wavefunction 
    complex*16, intent(inout), dimension(:) :: wf 
    complex*16                              :: wfnorm     
    wfnorm = wfmath_overlap(wf,wf)      ! calculate the norm of the whole wavefunction 
    !And divide everything by the square root of the norm -> normalize... 135 
    wf = wf / sqrt(wfnorm) end subroutine wfmath_normalize 
 
!------------------------------------------------------------------------------------------------ 
function wfmath_efield(lasertime) result(fieldstrength) 
    ! return the field strength of the laser pulse specified in the PROGVAR block  140 
    ! at the given LASERTIME 
    ! for an analytical form of the pulse, i.e. a Gaussian pulse.   
    use progvars 
    implicit none 
    real*8, intent(in) :: lasertime 145 
    real*8             :: fieldstrength 
    real*8             :: envelope, phase, ton, toff 
    fieldstrength = 0.d0          ! we start with nothing and add whatever we get... 
    ! GAUSS SHAPE 
    envelope      = Eo * dexp(- 2.d0 * dlog(2.d0) * ((lasertime-Eto)**2) / (Ewidth**2) ) 150 
    phase         = dmod(Eomega*lasertime+Ephi,2*pi) 
    fieldstrength = envelope * dcos(phase) 
    return 
end function wfmath_efield 
end module 155 

 C.4 Module potentials (wfPot.f90) 
module wfPot 
    implicit none   
    real*8, allocatable, target :: pot_curve1(:), pot_curve2(:)  
    ! these are our 2 potential curves 1 is ground, 2 is gerade/ungerade 5 
    integer     ::  selectedPotentialNumber = 0; 
    contains      
!------------------------------------------------------------------------------------------------ 
! I N I T I A L I Z A T I O N 
!------------------------------------------------------------------------------------------------ 10 
    subroutine potentials_init(zdim) 
        use debug 
        integer, intent(in) :: zdim             ! the dimension of the arrays          
        integer             :: iAllocStatus     ! return value 
        ! allocate potential arrays 15 
        allocate(pot_curve1(zdim),pot_curve2(zdim),stat=iAllocStatus) 
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        if (iAllocStatus /= 0) then 
            print *,"ERROR: can't allocate POTENTIAL arrays" 
            stop 
        endif 20 
        call debugmsg(10,1,"POTENTIALS_INIT: POTENTIAL arrays allocated") 
        !And make sure we have an active potential assigned - initialized with the lowest curve. 
        call potentials_setactive(1) 
        call debugmsg(5,1,"POTENTIALS_INIT: 1D potentials allocated") 
    end subroutine potentials_init   25 
!------------------------------------------------------------------------------------------------ 
    subroutine potentials_setactive(potnr) 
        use progvars 
        implicit none 
        ! chooses which potential curve is the currently active potential curve 30 
        integer, intent(in) :: potnr 
        selectedPotentialNumber = potnr; 
        select case(potnr) 
            case(1)  
                potential => pot_curve1 35 
            case(2)  
                potential => pot_curve2 
            case default 
                print *,"POTENTIALS_SETACTIVE: ERROR - potential number ", potnr,  
                        "is not within [1,2] range" 40 
                stop 
        end select     
    end subroutine potentials_setactive 
!------------------------------------------------------------------------------------------------ 
    subroutine potentials_readfromfile_activate(filename,potnr) 45 
        character(len=*), intent(in) :: filename        ! potential file to read 
        integer, intent(in) :: potnr         
        call potentials_setactive(potnr) 
        call potentials_readfromfile(filename)         
    end subroutine 50 
!------------------------------------------------------------------------------------------------ 
    subroutine potentials_readfromfile(filename) 
        ! read the potential from a file. In the first column is the position while  
        ! the second column gives the potential value. 
        use progvars 55 
        use debug 
        implicit none 
 
        character(len=*), intent(in) :: filename        ! potential file to read 
        integer                      :: ios             ! the error for the I/O operation 60 
        real*8                       :: pos, pot        ! position and potential from the file 
        integer                      :: nzpos           ! the grid point 
        logical                      :: warning         ! the general warning flag 
        potential   =   0.d0 
        nzpos       =   1 65 
        warning     =   .false.                         ! no warning condition 
        open(unit=501,file=trim(filename),access="sequential",recl=1024,status="old")  
        ! open file in binary form to read wavefunction 
        do 
            read(501,*,IOSTAT=ios)    pos, pot   ! read one line 70 
            if (ios.ne.0) then  
                exit       ! exit the do loop if an error occured, i.e. end of file 
            end if              
            if(nzpos <= nz) then     
               ! now we have the values from the file and can start assigning them  75 
               ! to our internal array                 
                potential(nzpos) = pot             
                nzpos = nzpos + 1             
            else 
                warning     =   .true.                  ! no warning condition 80 
                !exit 
            end if     
        end do                     
        if (ios < 0) then 
            if (warning) then 85 
                call debugmsg(5,2,"POTENTIALS_READ: WARNING - potential read,  

but file does not match grid") 
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            else 
                call debugmsg(5,2,"POTENTIALS_READ: data successfully read from file") 
            endif 90 
        else 
            call debugmsg(5,2,"POTENTIALS_READ: ERROR while reading file") 
            print *,"Error number: ",ios 
            pause 
        endif         95 
        close(501) 
    end subroutine potentials_readfromfile 
!------------------------------------------------------------------------------------------------ 
    subroutine potentials_done 
        use debug 100 
        integer :: iDeallocStatus     ! return value 
        ! deallocate potential arrays 
        deallocate(pot_curve1, pot_curve2,stat=iDeallocStatus) 
        if (iDeAllocStatus /= 0) then 
            print *,"ERROR: can't deallocate POTENTIAL arrays" 105 
            stop 
        endif         
        call debugmsg(10,1,"POTENTIALS_DONE: POTENTIAL arrays destroyed") 
        call debugmsg(5,1,"POTENTIALS_DONE: 1D potentials destroyed") 
    end subroutine potentials_done 110 
end module wfPot 

 

 C.5 Module parameters (params.f90) 
module params 
    implicit none     
    contains   5 
     subroutine params_read() 
        use progvars 
        use debug         
        integer                      :: ios             ! the error for the I/O operation 
        character(len=50)            :: key 10 
        real*8                       :: value         
     end subroutine 
end module 

 C.6 Module Crank-Nicolson propagation (CN.f90) 
module CN 
    implicit none     
    complex*16, allocatable, private :: psiout(:)     ! local wavefunction for propagation 
    complex*16, allocatable, private :: gamma(:)      ! used for CN-propagation algorithm 5 
    complex*16, allocatable, private :: diagarr(:)    ! diagonal elements used for CN-propagation  
    contains  
    subroutine CNInit() 
        use progvars 
        use debug 10 
        implicit none; 
        ! allocate 1D local wavefunctions 
        allocate(psiout(nz),stat=iAllocStatus) 
        if (iAllocStatus /= 0) then 
            print *,"ERROR: can't allocate 1D local wavefunction array" 15 
            stop 
        end if 
        call debugmsg (10,1,"PROPAGATOR_INIT: 1D local wavefunction array allocated") 
        ! allocate temporary CN-propagator array 
        allocate(gamma(nz),stat=iAllocStatus) 20 
        if (iAllocStatus /= 0) then 
            print *,"ERROR: can't allocate temporary propagator array GAMMA" 
            stop 
        end if 
        call debugmsg (10,1,"PROPAGATOR_INIT: temporary propagator array GAMMA allocated") 25 
        ! allocate CN diagonal elements array 
        allocate(diagarr(nz),stat=iAllocStatus) 
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        if (iAllocStatus /= 0) then 
            print *,"ERROR: can't allocate DIAGARR array" 
            stop 30 
        end if 
        call debugmsg (10,1,"PROPAGATOR_INIT: DIAGARR allocated")         
        call debugmsg(5,1,"PROPAGATOR_INIT: propagation arrays allocated")         
    end subroutine 
!------------------------------------------------------------------------------------------------ 35 
    subroutine CNCleanup() 
        use debug 
        integer             :: iDeallocStatus     ! return value 
        ! deallocate 1D sub-wavefunctions 
        deallocate(psiout,stat=iDeallocStatus) 40 
        if (iDeallocStatus /= 0) then 
            print *,"ERROR: can't deallocate 1D local wavefunction array" 
            stop 
        end if 
        call debugmsg (10,1,"PROPAGATOR_DONE: 1D local wavefunction array destroyed") 45 
        deallocate(gamma,stat=iDeallocStatus) 
        if (iDeallocStatus /= 0) then 
            print *,"ERROR: can't deallocate temporary propagator array GAMMA" 
            stop 
        end if 50 
        call debugmsg (10,1,"PROPAGATOR_DONE: temporary propagator array GAMMA destroyed") 
        deallocate(diagarr,stat=iDeallocStatus) 
        if (iDeallocStatus /= 0) then 
            print *,"ERROR: can't deallocate DIAGARR" 
            stop 55 
        end if 
        call debugmsg (10,1,"PROPAGATOR_DONE: DIAGARR destroyed") 
        call debugmsg(5,1,"PROPAGATOR_DONE: propagation arrays destroyed")     
    end subroutine CNCleanup 
!------------------------------------------------------------------------------------------------        60 
    subroutine CNPropagate(wfunc, timestep, efield, useabsorber) 
        use progvars 
        implicit none         
        ! uses Crank-Nicholson propagation scheme to propagate wavefunction for small timestep 
        complex*16, intent(inout), dimension(:)    :: wfunc         65 
        complex*16, intent(in)  :: timestep      ! complex for imaginary time propagation 
        real*8, intent(in)      :: efield                            
        logical, intent(in)     :: useabsorber         
        complex*16, parameter   :: iu = (0.d0,1.d0)            ! imaginary unit 
        !the diagonal elements without potential term 70 
        complex*16              :: diagz           
        !the constant off-diagonal elements 
        complex*16              :: subdiagz            
        ! 1.) Calculate constant tridiagonal elements of propagation matrix (Hamiltonean) 
        diagz = 0.5 + iu * timestep / (mass * 4.0 * deltaz**2)   75 
        ! Note: potential is added in propagation loop 
        subdiagz = -iu * timestep / (mass * 8.0 * deltaz**2) 
        ! 2.) Propagate a full potential and kinetic energy step at once 
        diagarr = potential * iu * timestep / 4.d0  + diagz     
        ! the diagonal elements including potential 80 
        call tridiag(wfunc,psiout,diagarr,subdiagz)     ! propagate in z-direction 
        !! 2.) Propagate half a potential step 
        ! wfunc = wfunc * (1.d0 - iu * potential * timestep / 4.d0) /  
        ! (1.d0 + iu * potential * timestep / 4.d0) 
        !! 3.) Propagate a full timestep T_z in z direction 85 
        ! call tridiag(wfunc,psiout,diagz,subdiagz)              ! propagate in z-direction 
        !! write back the result into the wavefunction 
        ! wfunc = psiout                             
        !! 4.) Propagate another half a potential step 
        ! wfunc = wfunc * (1.d0 - iu * potential * timestep / 4.d0) /  90 
        ! (1.d0 + iu * potential * timestep / 4.d0) 
        ! 5.) Apply the absorber to reduce grid boundary reflections (if absorber array is given) 
        if (useabsorber) then 
            wfunc = psiout*absorber 
        else 95 
            wfunc = psiout 
        end if         
    end subroutine 
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!------------------------------------------------------------------------------------------------ 
subroutine tridiag(psiin,psiout,diag,subdiag) 100 
    ! modified NUMERICAL RECIPES TRIDAG routine for constant diagonal  
    ! and super/subdiagonal elements 
    ! Ref.: Num. Recipes, p.24, sec. 2.4, U. Thumm ITAMP, 6/15/99 
    complex*16, intent(in)  :: psiin(:), diag(:) 
    complex*16, intent(out) :: psiout(:) 105 
    complex*16, intent(in)  :: subdiag 
    complex*16              :: beta 
    integer                 :: j 
    beta      = diag(1) 
    psiout(1) = psiin(1) / beta 110 
    do j=2, size(psiin) 
        gamma(j) = subdiag / beta 
        beta     = diag(j) - subdiag * gamma(j) 
        if (beta.eq.0) then 
           pause "ERROR: CNTRIDAG_CONST failed (beta=0)" 115 
           stop 
        endif 
        psiout(j) = (psiin(j) - subdiag * psiout(j-1)) / beta 
    enddo 
    do j=size(psiin)-1,1,-1 120 
        psiout(j) = psiout(j) - gamma(j+1) * psiout(j+1)  ! this loop cries for optimization 
    enddo 
    psiout = psiout – psiin                               ! subtract initial vector 
end subroutine tridiag   
end module 125 

 C.7 Module FFT propagation (FT.f90) 
module FT 
    implicit none 
    complex*16, pointer     ::  K(:)               ! Kinetic Energy part of Hamiltonian 
    contains     130 
    subroutine FTInit() 
        use progvars 
        use fft 
        implicit none 
        integer zloop  135 
        real*8 pn         
        allocate(K(nz), stat = iAllocStatus) 
        if (iAllocStatus /= 0) then 
            print *,"ERROR: can't allocate  vector K" 
            stop 140 
        endif         
        !calculate KE part of hamiltonian 
        do zloop = 1, nz 
            pn      = 2 * pi * (zloop-nz/2-1)/(maxz-minz) 
            K(zloop)= cdexp((-ii * deltat/(4 * mass))*(pn**2)) 145 
        enddo         
        call fftInit(nz,deltaz,mass)       
    end subroutine     
!------------------------------------------------------------------------------------------------ 
    subroutine FTPropagate(timestep, efield, useefield, useabsorber) 150 
        use progvars 
        use fft 
        use wfMath 
        implicit none 
        complex*16, intent(in)  :: timestep  155 
        real*8, intent(in)      :: efield  
        logical, intent(in)     :: useefield 
        logical, intent(in)     :: useabsorber         
        complex*16 K2(nz)         
        integer :: zloop, usee = 0 160 
        if(useefield)  usee = 1          
        call FTShift(nz,K,K2) 
        call fftForward(psi)             
        psi = fftvalues* K2             
        call fftInverse(psi) 165 
        psi = fftvalues        
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        psi = psi * cdexp(-ii* timestep*(potential-usee*Z*efield) )                         
        call fftForward(psi)             
        psi = fftvalues* K2             
        call fftInverse(psi) 170 
        psi = fftvalues         
        if(useabsorber .eq. .true.) then  
            psi = psi * absorber 
        end if 
        call wfmath_normalize(psi)         175 
    end subroutine    
!------------------------------------------------------------------------------------------------ 
subroutine FTShift(n,wf, wft) 
        implicit none 
        integer , intent (in)                     :: n 180 
        complex*16, intent(in), dimension(:)      :: wf       ! the input array to shift 
        complex*16, intent(inout), dimension(:)   :: wft      ! the target array  
        complex*16 wftemp(n)       
        integer i 
        do i = 1, n/2. 185 
            wftemp(i)= wf(i+n/2) 
            wftemp(i+n/2)= wf(i) 
        enddo      
        wft  = wftemp  
    end subroutine     190 
!------------------------------------------------------------------------------------------------ 
 subroutine FTCleanup() 
        use progvars 
        use fft 
        implicit none         195 
        call fftCleanup() 
    end subroutine     
end module 

 C.8 Module ADK ionization (adk.f90) 
module adk 
  implicit none 
  contains 
  subroutine adk_deplete(psiin, potlo, pothi, ioncharge, pulseint, pulselength,  5 
                             pulseomega, pulsephase) 
! ADK routine for improved Franck-Condon transition but based on atomic ADK rates for molecules,  
! taken from eq. (5) of J. P. Brichta et al., J. Phys. B 39, 3769 (2006). The initial wave packet  
! WAVEFUNCTION is originally moving in the lower potential POTLO and exposed to the given  
! ionizing pulse. Static ADK rates for variing field is used rather than cycle averaged in order 10 
! to account for really short pulses and the rapid change in envelope. The given wave funtion  
! DOES  NOT propagate during the pulse, thus the routine still assumes instantaneous ADK  
! depletion  and is therefore limited to very short pulses. Output is given in WAVEFUNCTION as  
! the remaining part of the original wave function and the ionized wave function movin in the 
! upper potential POTHI can be estimated as (original wave function) - (final wave function).   15 
    use wfmath  
    complex*16, dimension(:), intent(inout) :: psiin(:)         
    ! the initial wave function for ionization, also return value 
    real*8, dimension(:), intent(in)        :: potlo, pothi   
    ! both potential curves considered for the ADK transition 20 
    real*8, intent(in)                      :: ioncharge        
    ! the total charge of the ION (after the ADK transition) 
    real*8, intent(in)                      :: pulseint, pulselength, pulseomega, pulsephase   
    ! the laser parameters 
    real*8, parameter                       :: pi = 3.141592653589793238462643d0   25 
    ! lets start off with something round... 
    integer, parameter                      :: ncyclesteps = 128   
    ! number of sampling points per laser cycle 
    real*8, parameter                       :: sigmawidth = 2.d0   
    ! multiplier for the pulselength for total transition time 30 
    real*8                                  :: timestep             
    ! the delta t for the ADK calculation 
    real*8                                  :: currenttime         ! current time of the pulse 
    integer                                 :: nt, ntimesteps      ! for the time step loop 
    real*8                                  :: fieldenv             35 
    ! the envelope of the electric field of the laser pulse 
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    real*8                                  :: fieldphase           
    ! the laser pulse carrier envelope phase 
    real*8                                  :: efield              
    ! thats the electric field strengh of the laser we need 40 
    real*8                                  :: fieldabs             
    ! but only the magnitude of the field matters for ADK 
    integer                                 :: iAllocStatus        ! error check 
    real*8, dimension(:), allocatable       :: kappa, adkconst      
    ! for precomputing ADK constants 45 
    real*8                                  :: e                   
    ! integrate it and you still have the same function... 
    integer                                 :: nR, nRstep           
    ! for loop through the R values 
    real*8                                  :: rate 50 
    nRstep = size(psiin)        ! size of the wave function array in R 
    ! allocate some memory for precomputing some static values 
    allocate(kappa(nRstep), adkconst(nRstep), stat=iAllocStatus) 
    if (iAllocStatus /= 0) then 
      print *,"ERROR: can't allocate temporary ADK work arrays" 55 
      stop 
    endif   
    ! now procompute the static part of the ADK rates 
    e        = dexp(1.d0)                                     ! the Euler constant 
    kappa    = dsqrt(2.d0 * (pothi - potlo))/ioncharge   60 
    ! sqrt(2*I_p)/Z with I_p the ionization potential 
    adkconst = (3.d0*e/pi)**1.5d0 & 
               *(kappa**4.5d0)/(ioncharge**2.5d0) & 
               *(4.d0*e*(kappa**4)/ioncharge)**(2.d0*ioncharge/kappa-1.5d0) 
    timestep   = 2.d0*pi / (pulseomega * ncyclesteps)     65 
    ! calculate an appropriate timestep for each ADK transition 
    ntimesteps = nint(sigmawidth*pulselength/timestep)       
    ! how many time steps do we have in total? 
    do nt=0, ntimesteps-1     ! The ADK time loop 
      currenttime = -sigmawidth*pulselength/2.d0 + timestep*nt     ! get ma a clock reading 70 
      ! Calculate the electric field strengh of the laser at the current time 
      fieldenv    = dsqrt(pulseint) * dexp(- 2.d0 * dlog(2.d0) * (currenttime**2) / 
                     (pulselength**2) )     
      fieldphase  = dmod(pulseomega*currenttime+pulsephase,2*pi)    
      ! the current laser phase with respect to the maximum of the pulse 75 
      efield      = fieldenv * dcos(fieldphase)                  
      fieldabs    = dabs(efield)    
      ! ADK only depends on the magnitude of the electric field 
      if (fieldabs < 1.d-4) cycle   
         ! next timestep, if field strength is not large enough 80 
         ! now comes the ADK part - loop through all R value and see how much wave function  
         ! we will loose 
         !$OMP PARALLEL DO SCHEDULE(STATIC,1) PRIVATE(nR, rate) 
         do nR=1, nRstep 
            rate = adkconst(nR) * (fieldabs**(1.5d0 - 2.d0*ioncharge/kappa(nR))) & 85 
               *dexp(-2.d0*kappa(nR)**3/(3.d0*fieldabs))            
            ! the current ADK rate at given internuclear distance 
            psiin(nR) = psiin(nR)*(1.d0 - dsqrt(dabs(rate*timestep)))   
            ! and the depleted ground state wave function 
         enddo  90 
         !$OMP END PARALLEL DO 
    enddo ! (* time loop *) 
    ! and finally remove the precomputed arrays again 
    deallocate(kappa, adkconst, stat=iAllocStatus) 
    if (iAllocStatus /= 0) then 95 
      print *,"ERROR: can't deallocate temporary ADK work arrays" 
      stop 
    endif 
  end subroutine adk_deplete 
end module adk 100 

 C.9 Module Fast Fourier transforms (fft.f90) 
module fft 
  implicit none 
  integer, private        :: nzstep         ! the dimenstion of the 1D potentials/wavefunctions 
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  integer, private        :: nzstepp2       ! the next larger power of 2 5 
  real*8, private         :: deltaz         ! the grid spacing 
  real*8, private         :: mass           ! the mass of particles in a.u. 
  real*8, private         :: pmax           ! maximum momentum (from Nyquist theorem) 
  real*8, private         :: deltap         ! the momentum resolution 
  complex*16, allocatable, target :: fftvalues(:)  ! here goes the FFT stuff 10 
  contains   
!------------------------------------------------------------------------------------------------ 
! I N I T I A L I Z A T I O N 
!------------------------------------------------------------------------------------------------  
  subroutine fftInit(zdim,dz,particlemass) 15 
    use debug 
     
    integer, intent(in) :: zdim 
    real*8, intent(in)  :: dz, particlemass 
    integer             :: i, iAllocStatus     20 
    nzstep = zdim 
    deltaz = dz 
    mass   = particlemass     
    nzstepp2 = nzstep                           ! now find next larger power of 2 
    if (iand(nzstepp2,nzstepp2-1) /= 0) then    ! dirty trick to check for powers of two. 25 
      i = 1      ! initialize with 1, so we automatically get the NEXT larger power of 2 
      do while (nzstepp2 /= 1) 
        nzstepp2 = rshift(nzstepp2,1)! shift n to the right until the last bit has been found 
        i = i + 1                      ! count how many bits we have to shift 
      enddo 30 
      nzstepp2 = 2**i   
      ! the next larger power of two - just from counting the number of set bits in zdim 
    end if 
    ! pmax   = 1.d0/(2.d0*deltaz)    ! maximum momentum of the grid (see Nyquist theorem) 
    ! deltap = 2.d0*pmax / nzstepp2  ! the momentum resolution     35 
    ! allocate the FFT array 
    allocate(fftvalues(nzstepp2),stat=iAllocStatus) 
    if (iAllocStatus /= 0) then 
      print *,"ERROR: can't allocate FFT array" 
      stop 40 
    endif 
    call debugmsg(5,1,"FFT_INIT: FFT array allocated") 
    print*,' ' 
    print*,' FFT_INIT:   input dimension=',zdim,' used dimension=nstepp2=',nzstepp2 
    print*,' FFT_INIT:   fftvalues(nzstepp2) allocated' 45 
    print*,' FFT_INIT:   dz=',dz,' particlemass=',sngl(particlemass)   !sngl(dz) 
    print*,' ' 
  end subroutine fftInit   
!------------------------------------------------------------------------------------------------ 
  subroutine fftCleanup 50 
    use debug     
    integer :: iDeallocStatus     
    ! deallocate the FFT array 
    deallocate(fftvalues,stat=iDeallocStatus) 
    if (iDeallocStatus /= 0) then 55 
      print *,"ERROR: can't deallocate FFT array" 
      stop 
    endif 
    call debugmsg(5,1,"FFT_DONE: FFT array destroyed")     
  end subroutine 60 
!------------------------------------------------------------------------------------------------   
  subroutine fftForward(fftinput) 
    ! calculates the discrete Fourier transformation of the given function data points 
    ! ~ Exp(-2 pi i k n / N) 
    ! Source: Numerical Recipes, Chap. 12.2 65 
    complex*16, dimension(:), intent(in) :: fftinput       ! the function values for the FFT 
    integer                              :: i, istep, j, m, mmax, n2 
    real*8                               :: theta 
    complex*16                           :: w, wp, ws 
    real*8, parameter                    :: pi = 3.141592653589793238462643d0 70 
    complex*16                           :: dummy     
    ! copy the input data to the FFT array and fill the blanks 
    fftvalues(1:nzstep) = fftinput                               ! copy the input data 
    if (nzstep /= nzstepp2) fftvalues(nzstep:nzstepp2) = 0.d0    ! fill the rest with 0 
    ! The bit-reversal routine, to rearrange the array 75 
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    n2 = nzstepp2/2 
    j  = n2 
    do i=1, nzstepp2-2 
      if (j > i) then ! swap the values 
        dummy          = fftvalues(j+1) 80 
        fftvalues(j+1) = fftvalues(i+1) 
        fftvalues(i+1) = dummy 
      endif 
      m = n2 
      do 85 
        if (m<2 .or. j<m) exit 
        j = j-m 
        m = m/2 
      enddo 
      j = j+m 90 
    enddo 
    ! Danielson-Lanczos algorithm 
    mmax = 1 
    do                      ! outer loop - executed log_2 N times 
      if ( nzstepp2 <= mmax ) exit 95 
      istep = 2*mmax 
      theta = pi / mmax   ! initialize for trigonometric recurrence 
      wp    = cmplx(-2.0d0*sin(0.5d0*theta)**2,sin(theta)) 
      w     = cmplx(1.0d0,0.0d0) 
      do m=1,mmax           ! here are the two nested inner loops 100 
        ws = w 
        do i=m,nzstepp2,istep 
          j            = i + mmax 
          dummy        = ws*fftvalues(j)    ! this is the Danielson-Lanczos formula 
          fftvalues(j) = fftvalues(i)-dummy 105 
          fftvalues(i) = fftvalues(i)+dummy 
        enddo 
        w = w*wp+w          ! trigonometric recurrence 
      enddo 
      mmax = istep 110 
    enddo 
    ! Normalization 
    fftvalues = fftvalues / sqrt(dble(nzstepp2)) 
  end subroutine   
!------------------------------------------------------------------------------------------------ 115 
  subroutine fftInverse(fftinput) 
    ! calculates the inverse discrete Fourier transformation of the given function data points 
    ! ~ Exp(2 pi i k n / N) 
    ! This is ABSOLUTELY the same routine as FFT_FORWARD,  
    ! except THETA in the D.L. algortihm has a minus. 120 
    complex*16, dimension(:), intent(in) :: fftinput       ! function values for the FFT 
    integer                              :: i, istep, j, m, mmax, n2 
    real*8                               :: theta 
    complex*16                           :: w, wp, ws 
    real*8, parameter                    :: pi = 3.141592653589793238462643d0 125 
    complex*16                           :: dummy     
    ! copy the input data to the FFT array and fill the blanks     
    fftvalues(1:nzstep) = fftinput                               ! copy the input data 
    if (nzstep /= nzstepp2) fftvalues(nzstep:nzstepp2) = 0.d0    ! fill the rest with 0 
    ! The bit-reversal routine, to rearrange the array 130 
    n2 = nzstepp2/2 
    j  = n2 
    do i=1, nzstepp2-2 
      if (j > i) then ! swap the values 
        dummy          = fftvalues(j+1) 135 
        fftvalues(j+1) = fftvalues(i+1) 
        fftvalues(i+1) = dummy 
      endif 
      m = n2 
      do 140 
        if (m<2 .or. j<m) exit 
        j = j-m 
        m = m/2 
      enddo 
      j = j+m 145 
    enddo 
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  ! Danielson-Lanczos algorithm 
    mmax = 1 
    do                      ! outer loop - executed log_2 N times 
      if ( nzstepp2 <= mmax ) exit 150 
      istep = 2*mmax 
      ! initialize for trigonometric recurrence - minus sign for inverse transformation 
      theta = - pi / mmax    
      wp    = cmplx(-2.0d0*sin(0.5d0*theta)**2,sin(theta)) 
      w     = cmplx(1.0d0,0.0d0) 155 
      do m=1,mmax           ! here are the two nested inner loops 
        ws = w 
        do i=m,nzstepp2,istep 
          j            = i + mmax 
          dummy        = ws*fftvalues(j)    ! this is the Danielson-Lanczos formula 160 
          fftvalues(j) = fftvalues(i)-dummy 
          fftvalues(i) = fftvalues(i)+dummy 
        enddo 
        w = w*wp+w          ! trigonometric recurrence 
      enddo 165 
      mmax = istep 
    enddo   
    ! Normalization 
    fftvalues = fftvalues / sqrt(dble(nzstepp2)) 
  end subroutine  170 
!------------------------------------------------------------------------------------------------ 
  subroutine fft_power(fftinput) 
    !calculates the power spectrum of the given wave function and stores the magnitude square in 
    !the REAL part of FFTVALUES while the phase information (between -Pi and Pi) is stored in the 
    !IMAGINARY part.   175 
    complex*16, dimension(:), intent(in) :: fftinput       ! function values for the FFT 
    integer                              :: np 
    real*8                               :: magnitude, phase 
    complex*16                           :: value   
    call fftForward(fftinput)                             ! first get the DFT of the data 180 
    do np=1, nzstepp2 
      value     = fftvalues(np) 
      magnitude = value**2 
      if (value==0.d0) then  
        phase = dcmplx(0.d0,0.d0) 185 
      else 
        phase = datan2(dimag(value),dreal(value)) 
      endif 
      fftvalues(np) = dcmplx(magnitude,phase) 
    enddo    190 
  end subroutine fft_power 
!------------------------------------------------------------------------------------------------  
    subroutine fft_plot(fftinput,filename) 
    use debug 
    complex*16, dimension(:), intent(in) :: fftinput       ! function values for the FFT 195 
    character(len=*), intent(in)         :: filename 
    integer                              :: np 
    real*8                               :: momentum, phase 
    complex*16                           :: value 
    call fftInverse(fftinput) 200 
    open(unit=800,file=filename,status="replace",access="sequential")   
    write(800,'(5A12)') "Momentum","Psi_Real","Psi_Imag","Psi_Abs","Psi_Phase"         
    do np=1,nzstepp2 
      value    = fftvalues(np) 
      momentum = -pmax + (np-1)*deltap 205 
      if (value==0.d0) then  
        phase = dcmplx(0.d0,0.d0) 
      else 
        phase = datan2(dimag(value),dreal(value)) 
      endif 210 
      write(800,'(5E12.4)') momentum, value, abs(value), phase 
    enddo 
    close(800) 
    call debugmsg(5,2,"FFT_PLOT: momentum spectrum plotted to file") 
  end subroutine fft_plot   215 
end module fft 
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 C.10 Module Diagonalization (diag.f90) 
module diag 
  use progvars;   
  implicit none 
  integer, private       :: nzstep1   ! the dimenstion of the 1D potentials/wavefunctions 5 
  real*8, private        :: deltaz1   ! the grid spacing 
  real*8, private        :: mass1     ! the mass1 of particles in a.u. 
  interface diag_release              ! release the objects TEnergies or TStates if allocated 
  module procedure diag_release_TEnergies, diag_release_TStates  
! define different procedures for the types 10 
  end interface 
  interface diag_diagonalize     ! the working horse. diagonalize the potential array. 
  module procedure diag_diagonalize_TEnergies, diag_diagonalize_TStates   
! define different procedures for the types 
  end interface 15 
  interface diag_plot                                       ! Plot the results to file 
  module procedure diag_plot_TEnergies, diag_plot_TStates ! define diff. proceds for the types 
  end interface 
  contains   
  subroutine diag_init(zdim,dz,particlemass1) 20 
    use debug     
    integer, intent(in) :: zdim 
    real*8, intent(in)  :: dz, particlemass1     
    nzstep1 = zdim 
    deltaz1 = dz 25 
    mass1   = particlemass1 
    call debugmsg(5,1,"DIAG_INIT: diagonalization routine initialized.")      
  end subroutine diag_init   
!------------------------------------------------------------------------------------------------ 
  subroutine diag_done 30 
    use debug     
    call debugmsg(5,1,"DIAG_DONE: diagonalization routine closed.")       
  end subroutine diag_done 
!------------------------------------------------------------------------------------------------  
  subroutine diag_release_TEnergies(energies) 35 
    use debug 
    type(TEnergies), intent(inout) :: energies           ! we want to release this object 
    integer                        :: iDeallocStatus     ! return value     
    energies%numbound = 0                                ! we have zero bound states from now on 
    if (associated(energies%energyarr)) then 40 
      deallocate(energies%energyarr,stat=iDeallocStatus) 
      if (iDeAllocStatus /= 0) then 
        print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array" 
        stop 
      endif 45 
      call debugmsg(10,1,"DIAG_RELEASE: DIAGONALIZATION ENERGY array destroyed") 
    endif         
    call debugmsg(5,1,"DIAG_RELEASE: object destroyed")     
  end subroutine diag_release_TEnergies 
!------------------------------------------------------------------------------------------------ 50 
  subroutine diag_release_TStates(states) 
    use debug 
    type(TStates), intent(inout) :: states             ! we want to release this object 
    integer                      :: iDeallocStatus     ! return value     
    states%numbound = 0                                ! we have zero bound states from now on 55 
    if (associated(states%energyarr)) then 
      deallocate(states%energyarr,stat=iDeallocStatus) 
      if (iDeAllocStatus /= 0) then 
        print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array" 
        stop 60 
      endif 
      call debugmsg(10,1,"DIAG_RELEASE: DIAGONALIZATION ENERGY array destroyed") 
    endif      
    if (associated(states%wavefunctions)) then 
      deallocate(states%wavefunctions,stat=iDeallocStatus) 65 
      if (iDeAllocStatus /= 0) then 
        print *,"ERROR: can't deallocate DIAGONALIZATION WAVE FUNCTION array" 
        stop 
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      endif 
      call debugmsg(10,1,"DIAG_RELEASE: DIAGONALIZATION WAVE FUNCTION array destroyed") 70 
    endif   
    call debugmsg(5,1,"DIAG_RELEASE: object destroyed")  
  end subroutine diag_release_TStates 
!------------------------------------------------------------------------------------------------        
  subroutine diag_diagonalize_TEnergies(potential, energies) 75 
    ! this routine diagonaalizes the 1d hamiltonean given only by it's potential 
    use debug 
    real*8, pointer                 :: potential(:)            ! the potential array 
    type(TEnergies), intent(inout)  :: energies                ! type for the returned energies 
    integer                         :: iAllocStatus            ! return value 80 
    real*8, allocatable             :: subsuper(:), diagarr(:)  
    ! the diagonal, sub- and super-diagonals of the Hamiltonian 
    real*8                          :: mine                    ! minimum bound energy 
    if (associated(energies%energyarr)) then 
      deallocate(energies%energyarr,stat=iAllocStatus) 85 
      if (iAllocStatus /= 0) then 
        print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array" 
        stop 
      endif 
      call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array destroyed") 90 
    endif       
    energies%numbound = 0                              ! first we start with 0 bound states 
    allocate(subsuper(nzstep1),diagarr(nzstep1),stat=iAllocStatus) 
    if (iAllocStatus /= 0) then 
      print *,"ERROR: can't allocate tridiagonal Hamiltonian array" 95 
      stop 
    endif 
    call debugmsg(10,1,"DIAG_DIAGONALIZE: tridiagonal Hamiltonian array allocated")     
    diagarr  = potential + 1.d0/(mass1*deltaz1**2)      ! the diagonal array of the Hamiltonian 
    subsuper = -1.d0/(2.d0 * mass1 * deltaz1**2)        ! the sub- and super-diagonals of H 100 
 
    call debugmsg(5,1,"DIAG_DIAGONALIZE: diagonalizing potential - only energies...") 
    call dtqli(diagarr,subsuper)                      ! call the routine from Numerical Recipes 
 
    mine = min(potential(1),potential(nzstep1))       ! find the minimum bound state energy 105 
    energies%numbound = count(diagarr < mine)         ! count the number of bound states 
    allocate(energies%energyarr(energies%numbound),stat=iAllocStatus) 
    if (iAllocStatus /= 0) then 
      print *,"ERROR: can't allocate DIAGONALIZATION ENERGY array" 
      stop 110 
    endif 
    call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array allocated") 
    energies%energyarr = pack(diagarr, diagarr<mine)   
    ! copy only the corresponding energies into the output  
    deallocate(subsuper,diagarr,stat=iAllocStatus) 115 
    if (iAllocStatus /= 0) then 
      print *,"ERROR: can't deallocate tridiagonal Hamiltonian array" 
      stop 
    endif 
    call debugmsg(10,1,"DIAG_DIAGONALIZE: tridiagonal Hamiltonian array released")     120 
  end subroutine diag_diagonalize_TEnergies 
!------------------------------------------------------------------------------------------------ 
  subroutine diag_diagonalize_TStates(potential, states) 
    ! this routine diagonaalizes the 1d hamiltonean given only by it's potential.  
    ! This time WITH wave functions 125 
    use debug 
    use wfmath 
    implicit none;     
    real*8, pointer                 :: potential(:)   ! the potential array 
    type(TStates), intent(inout)    :: states         ! type for the returned wave functions 130 
    integer                         :: iAllocStatus   ! return value 
    ! the diagonal, sub- and super-diagonals of the Hamiltonian 
    real*8, allocatable             :: subsuper(:), diagarr(:)  
    real*8, allocatable             :: wavefunctions(:,:)  ! temporary wave function array 
    real*8                          :: mine                ! minimum bound energy 135 
    integer                         :: n 
    if (associated(states%energyarr)) then 
      deallocate(states%energyarr,stat=iAllocStatus) 
      if (iAllocStatus /= 0) then 
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        print *,"ERROR: can't deallocate DIAGONALIZATION ENERGY array",iAllocStatus 140 
        stop 
      endif 
      call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array destroyed") 
    endif  
    if (associated(states%wavefunctions)) then 145 
      deallocate(states%wavefunctions,stat=iAllocStatus) 
      if (iAllocStatus /= 0) then 
        print *,"ERROR: can't deallocate DIAGONALIZATION WAVE FUNCTION array",iAllocStatus 
        stop 
      endif 150 
      call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION WAVE FUNCTION array destroyed") 
    endif   
    states%numbound = 0                                   ! first we start with 0 bound states 
    allocate(subsuper(nzstep1),diagarr(nzstep1),stat=iAllocStatus) 
    if (iAllocStatus /= 0) then 155 
      print *,"ERROR: can't allocate tridiagonal Hamiltonian array" 
      stop 
    endif 
    call debugmsg(10,1,"DIAG_DIAGONALIZE: tridiagonal Hamiltonian array allocated") 
    allocate(wavefunctions(nzstep1,nzstep1),stat=iAllocStatus) 160 
    if (iAllocStatus /= 0) then 
      print *,"ERROR: can't allocate temporary wave function array" 
      stop 
    endif 
    call debugmsg(10,1,"DIAG_DIAGONALIZE: temporary wave function array allocated")     165 
    diagarr  = potential + 1.d0/(mass1*deltaz1**2)    ! the diagonal array of the Hamiltonian 
    subsuper = -1.d0/(2.d0 * mass1 * deltaz1**2)      ! the sub- and super-diagonals of H 
    wavefunctions = 0.d0 
    do n=1, nzstep1 
      wavefunctions(n,n) = 1.d0                       ! fill with identity matrix 170 
    enddo 
    call debugmsg(5,1,"DIAG_DIAGONALIZE: diagonalizing potential - energies and wave 
functions...") 
    call dtqli(diagarr,subsuper,wavefunctions)        ! call the routine from Numerical Recipes 
    mine = min(potential(1),potential(nzstep1))       ! find the minimum bound state energy 175 
    states%numbound = count(diagarr < mine)           ! count the number of bound states 
    allocate(states%energyarr(states%numbound),stat=iAllocStatus) 
    if (iAllocStatus /= 0) then 
      print *,"ERROR: can't allocate DIAGONALIZATION ENERGY array" 
      stop 180 
    endif 
    call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION ENERGY array allocated") 
    allocate(states%wavefunctions(states%numbound,nzstep1),stat=iAllocStatus) 
    if (iAllocStatus /= 0) then 
      print *,"ERROR: can't allocate DIAGONALIZATION WAVE FUNCTION array" 185 
      stop 
    endif 
    call debugmsg(10,1,"DIAG_DIAGONALIZE: DIAGONALIZATION WAVE FUNCTION array allocated") 
    ! copy only the corresponding energies into the output 
    states%energyarr = pack(diagarr, diagarr<mine) 190 
    do n=1, nzstep1 
 ! and copy the wave functions  
        states%wavefunctions(:,n) = pack(wavefunctions(n,:), diagarr<mine) 
    enddo     
    do n=1, states%numbound 195 
        call wfmath_normalize(states%wavefunctions(n,:)) ! we like normalized wave functions 
    enddo  
    deallocate(subsuper,diagarr,wavefunctions,stat=iAllocStatus) 
    if (iAllocStatus /= 0) then 
      print *,"ERROR: can't deallocate diagonalization arrays" 200 
      stop 
    endif 
    call debugmsg(10,1,"DIAG_DIAGONALIZE: diagonalization arrays released")     
  end subroutine diag_diagonalize_TStates 
!------------------------------------------------------------------------------------------------ 205 
  subroutine diag_plot_TEnergies(energies,filename) 
    use debug 
    use strings 
    type(TEnergies), intent(in)  :: energies       ! this is what we plot 
    character(len=*), intent(in) :: filename 210 
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    integer                      :: n    
open(unit=900,file=trim(concat(filename,"_energies.dat")),status="replace",access="sequential")   
    write(900,'(3A12)') "State","Energy_au","Energy_eV"         
    do n=1,energies%numbound 
      write(900,'(I12,2E12.4)') n,energies%energyarr(n),energies%energyarr(n)*27.2114d0 215 
    enddo 
    close(900) 
    call debugmsg(5,2,"DIAG_PLOT: energies plotted to file") 
  end subroutine diag_plot_TEnergies 
!------------------------------------------------------------------------------------------------ 220 
  subroutine diag_plot_TStates(states,filename) 
    use debug 
    use strings 
    type(TStates), intent(in)    :: states       ! this is what we plot 
    character(len=*), intent(in) :: filename 225 
    integer                      :: n    
open(unit=901,file=trim(concat(filename,"_wavefunctions.dat")),status="replace",access="sequentia
l")           
    write(901,'(e12.4,$)') states%energyarr(:)*27.2114d0 
    do n=1,nzstep1 230 
      write(901,'(e12.4,$)') cdabs(states%wavefunctions(:,n))**2 
      write(901,*) 
    enddo 
    close(901) 
    call debugmsg(5,2,"DIAG_PLOT: wave functions plotted to file") 235 
  end subroutine diag_plot_TStates   
!------------------------------------------------------------------------------------------------  
  function dpythag(a, b) result(c) 
    ! using Phytagoras a^2 + b^2 = c^2 for a triangle, calculate c in a numerically stable way. 
    real*8, intent(in) :: a, b 240 
    real*8             :: absa, absb 
    real*8             :: c 
    absa=dabs(a) 
    absb=dabs(b) 
    if(absa.gt.absb)then 245 
      c=absa*dsqrt(1.d0+(absb/absa)**2) 
    else 
      if(absb.eq.0.d0)then 
        c=0.d0 
      else 250 
        c=absb*dsqrt(1.d0+(absa/absb)**2) 
      endif 
    endif 
    return 
  end function dpythag 255 
!------------------------------------------------------------------------------------------------ 
  subroutine dtqli(d,e,z) 
    ! solver routine from Numerical Recipes for a tridiagonal linear equation 
    ! the diagonal and sub- super-diagonals 
    real*8, dimension(:), intent(inout)             :: d, e  260 
    ! returns the wave functions. Must identity matrix at call 
    real*8, dimension(:,:), intent(inout), optional :: z     
    integer                                         :: n, np, i, iter, k, l , m 
    real*8                                          :: b, c, dd, f, g, p, r, s 
    np = size(d) 265 
    n = np 
    if (present(z)) then 
      write (*,*) 'DTQLI: diagonalization with eigenvectors' 
    else 
      write (*,*) 'DTQLI: diagonalization, only eigenvalues' 270 
    endif 
    write (*,*) '       matrix is',np,'x',np 
    do i=2,n 
      e(i-1)=e(i) 
    enddo 275 
    e(n)=0.d0 
    do 15 l=1,n 
      iter=0 
1     do m=l,n-1 
        dd=dabs(d(m))+dabs(d(m+1)) 280 
        if (dabs(e(m))+dd.eq.dd) goto 2 
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      enddo 
      m=n 
2     if (m.ne.l) then 
        if (iter.eq.30) pause 'too many iterations in tqli' 285 
        iter=iter+1 
        g=(d(l+1)-d(l))/(2.d0*e(l)) 
        r=dpythag(g,1.d0) 
        g=d(m)-d(l)+e(l)/(g+sign(r,g)) 
        s=1.d0 290 
        c=1.d0 
        p=0.d0 
        do 14 i=m-1,l,-1 
          f=s*e(i) 
          b=c*e(i) 295 
          r=dpythag(f,g) 
          e(i+1)=r 
          if(r.eq.0.d0)then 
            d(i+1)=d(i+1)-p 
            e(m)=0.d0 300 
            goto 1 
          endif 
          s=f/r 
          c=g/r 
          g=d(i+1)-p 305 
          r=(d(i)-g)*s+2.d0*c*b 
          p=s*r 
          d(i+1)=g+p 
          g=c*r-b 
          ! omit lines from here ... 310 
          if (present(z)) then 
            do k=1,n 
              f=z(k,i+1) 
              z(k,i+1)=s*z(k,i)+c*f 
              z(k,i)=c*z(k,i)-s*f 315 
            enddo 
          endif 
          ! to here when finding only eigenvalues. 
14      continue 
        d(l)=d(l)-p 320 
        e(l)=g 
        e(m)=0.d0 
        goto 1 
      endif 
15  continue 325 
    return 
  end subroutine dtqli 
end module diag

 C.11 Module Debug (debug.f90) 
module debug 
  implicit none 
  integer, private   :: global_debug_level, global_debug_mask 
  integer, private   :: debugoutput = 0 5 
  contains 
  subroutine setdebug(level,mask) 
    integer, intent(in)   :: level, mask 
    global_debug_level = level 
    global_debug_mask = mask 10 
  end subroutine setdebug 
!-------------------------------------------------------------------------------- 
  subroutine debugmsg(level, mask, msg) 
    integer             :: level, mask 
    character (len = *) :: msg 15 
    if 
(((level.le.global_debug_level).or.(iand(mask,global_debug_mask).eq.mask)).and.(debugoutput.eq.0)
) then 
      print *, msg 
    endif 20 
  end subroutine debugmsg 
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!-------------------------------------------------------------------------------- 
  subroutine debug_off 
    debugoutput = debugoutput + 1 
  end subroutine debug_off 25 
!-------------------------------------------------------------------------------- 
  subroutine debug_on 
    if ( debugoutput > 0 ) debugoutput = debugoutput - 1 
  end subroutine debug_on 
!-------------------------------------------------------------------------------- 30 
end module debug 
 

 C.12 Module Files (filesWin.f90) 
module files 
  implicit none 
  contains 5 
    subroutine EnsureFolderExists(folder) 
        character(len=*), intent(in)  :: folder 
        character(len=120) :: foldername 
        logical :: dir_e     
        folderName = folder // '.'; 10 
        ! a trick to be sure docs is a dir     
        inquire( file= trim(folderName), exist=dir_e ) 
        if ( dir_e ) then   
            write(*,*), "dir exists!" 
        else   15 
            ! workaround: it calls an extern program...   
            call system('mkdir ' // folder); 
        end if 
    end subroutine EnsureFolderExists 
end module files 20 
 

 C.13 Module strings (strings.f90) 
module strings 
  implicit none 
  contains 5 
  function concat(s1, s2) 
    character(len=*), intent(in)             :: s1, s2 
    character(len=len_trim(s1)+len_trim(s2)) :: concat  ! function name 
    concat = trim(s1) // trim(s2) 
  end function concat 10 
!------------------------------------------------------------------------------------------------ 
  function rmblank(s) 
    character(len=*), intent(in) :: s 
    character(len=len_trim(s))   :: rmblank             ! function name 
    integer                      :: i,j     15 
    j = 0 
    rmblank = '' 
    do i=1, len(s) 
      if (s(i:i).ne.' ') then 
        j = j + 1 20 
        rmblank(j:j) = s(i:i) 
      endif 
    enddo 
    rmblank = trim(rmblank)     ! final adjustment 
    return 25 
  end function rmblank 
!------------------------------------------------------------------------------------------------  
function uppercase(s) 
    ! returns an uppercase version of a string. 
    implicit none 30 
    integer                      :: i,j,n 
    character(len=*), intent(in) :: s 
    character(len=len(s))        :: uppercase 
    uppercase = s 
    n = len_trim (uppercase) 35 
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    do i = 1, n 
      j = ichar(uppercase(i:i)) 
      if (97 <= j .and. j <= 122) uppercase(i:i) = char(j - 32) 
    end do 
    return 40 
  end function uppercase 
 
!------------------------------------------------------------------------------------------------ 
  function system_checkvariable(var,value) result(exists) 
    character(len=*), intent(in)  :: var 45 
    character(len=*), intent(out) :: value 
    logical                       :: exists 
    character(len=128)            :: argument,variable 
    integer                       :: iargc, iargcount, i 
    integer                       :: splitpos 50 
    iargcount = iargc()     ! return the number of argument values 
    do i=1, iargcount 
      call getarg(i,argument) 
      splitpos = scan(argument,"=") 
      if (splitpos.ne.0) then 55 
        variable = uppercase(trim(argument(1:splitpos-1))) 
        if (variable.eq.uppercase(trim(var))) then 
          exists = .true. 
          value = trim(argument(splitpos+1:len(argument))) 
          return 60 
        endif 
      endif 
    enddo 
    exists=.false. 
    value = "" 65 
    return 
  end function system_checkvariable 
!------------------------------------------------------------------------------------------------ 
  function system_checkcommand(var) result(exists) 
    character(len=*), intent(in)  :: var 70 
    logical                       :: exists 
    character(len=128)            :: argument,variable 
    integer                       :: iargc, iargcount, i 
    integer                       :: splitpos 
    iargcount = iargc()     ! return the number of argument values 75 
    do i=1, iargcount 
      call getarg(i,argument) 
      splitpos = scan(argument,"=") 
      if (splitpos.eq.0) then 
        variable = uppercase(trim(argument)) 80 
        if (variable.eq.uppercase(trim(var))) then 
          exists = .true. 
          return 
        endif 
      endif 85 
    enddo 
    exists=.false. 
    return 
  end function system_checkcommand 
!------------------------------------------------------------------------------------------------ 90 
  function system_realvariable(var,default) result(value) 
    use debug 
    character(len=*), intent(in) :: var 
    character(len=80)            :: argvalue 
    real*8                       :: value, default 95 
    value = default 
    if (system_checkvariable(var,argvalue)) then 
      read (argvalue,*) value 
      write (argvalue,'(2A,A10,D10.4)') "SYSTEM: used variable ",trim(uppercase(var))," = ",value 
      call debugmsg(5,8,trim(argvalue)) 100 
    endif 
    return 
  end function system_realvariable  



151 

 

Appendix D - Two-state code 
This appendix describes the source code used in the calculations including dipole 

couplings. It is written in FORTRAN-90. The code has a main programm that uses several 

subroutines and functions that are divided into different files.  

 

Module Description 
TDSE.f90 Main program 
tdsePumpProbe.F90 Pump and Probe subroutines 
progvars.f90 Defining program variables and default values. 
wfMath.f90 Same as C3 
wfPot.f90 Same as C4 but with two more potentials. 
params.f90 Same as C5 
CN.f90 Same as Appendix C6 
FT.f90 Same as Appendix C7 
adk.f90 ADK depletion and transition subroutines. 
fft.f90 Same as C9 
diag.f90 Same as Appendix C10 
debug.f90 Same as Appendix C11 
fileswin.f90 Same as Appendix C12 
strings.f90 Same as Appendix C13 

 

 D.1 Main Program (tdse.f90) 
program main 
    use progvars;     
    implicit none 
     
    Tend           = 413.2     !time propagated after probe pulse 
    boundStateCutOff=  200     !cut for bound part of WF.   
     
    molecule    = "D2"; 
    inputFolder = "input/H2curves-0.05-100/";    
    curve2  = "H2+pot_gerade.dat"; 
    curve3  = "H2+pot_ungerade.dat"      
    curve4  = "H2+dpcouplings-0.05.dat"; 
    outputFolder= "Output\D2\CP_False-ADK_False\"; 
 
 
    call RunOnce();       
 
    print *, 'program completed' 
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end program main 
 
!-------------------------------------------------------------------------------- 
subroutine RunOnce() 
    use progvars 
    use files  
    use tdsePumpProbe; 
    use tdseMethods; 
    use strings; 
    use timer; 
    use adk; 
    implicit none 
     
    call timer_start(); 
     
    call timer_printcurrenttime(); 
     
    call EnsureFolderExists(outputFolder); 
     
    call init(); print *, 'init completed'; 
     
    call timer_printcurrenttime(); 
     
    call find_groundstate(psiground,.true.); print *, 'find_groundstate completed';     
    call timer_printcurrenttime(); 
     
    call Apply_ADK(psiground); 
    call printpsi(psiground,trim(concat(outputFolder,"psiground_ADK.dat"))) 
    call timer_printcurrenttime(); 
     
    !here  at this point psi contains ground state 
    call calculate_energy(psiground); print *, 'calculate_energy completed';     
    call timer_printcurrenttime(); 
     
    call adk_init(); 
     
    call Run(); 
     
    call adk_done(); 
     
    print *, 'run completed'; 
     
    call cleanup();  
     
    print *, 'cleanup completed'; 
         
    call timer_stop(); 
     
    print *, 'timer stop completed'; 
     
    call timer_writeelapsedtimetofile(trim(concat(outputFolder,"timing.txt"))); 
     
    print *, 'completed completed'; 
     
end subroutine RunOnce 
 
!_______________________________input parameters____________________________ 
subroutine init     
    use progvars 
    use strings; 
    use wfMath; 
    use wfPot; 
    use tdseMethods; 
    implicit none 
 
    integer :: nloop       
    real*8  :: widthz,pz 
     
    select case (trim(molecule)) 
        case("H2") 
            mass = 917.66d0; nz = 2048;  deltaz  = 0.05d0; 
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        case("D2") 
            mass = 1835.241507d0; nz = 1024;  deltaz  = 0.05d0; 
        case("N2") 
            mass = 12846.69099d0; nz = 512;  deltaz  = 0.01d0;  
        case("O2") 
            mass = 14681.93206d0; nz =8192 ;  deltaz  = 0.005d0; 
        case("Ar2") 
            mass = 36447.94123d0; nz = 65536;  deltaz  = 0.002d0; 
    end select 
    
    maxt    = 33072.80d0 !800fs                 ! maximum time  
    deltat  = 1.0d0                             ! delta time  
    widthz  = 1.0d0                             ! width of the gaussian 
    minz    = 0.05d0                            ! minimum z in a.u. 
    maxz    = nz * deltaz                       ! maximum z in a.u.         
    centerz = 2.1d0                             ! center of the gaussian     
    nt      = NINT(maxt/deltat)                 ! time steps      
    pz      = 0.d0                              ! not used currently 
     
  !_____________________________FFT Section____________________________________________ 
    deltafft    =  20.d0* deltat  !1.0d0*deltat ! time step for FFT 
    nfft        =   NINT(maxt/deltafft)         ! no of steps for FFT 
     
    !_________________________absorber parameters_______________________________________ 
    fadewidth    = 10.d0                 ! the width of the absorber in a.u. 
    fadestrength = 0.01d0                ! the maximum heigth of the negative imaginary potential 
         
    !_________________________E FIELD section_____________________________________________ 
    Ewidth  = 1446.2d0        !35fs             ! width of the envelope 
    Eo      = 0.053           !E14              ! field amplitude 
    Eomega  = 0.057d0         !800nm            ! laser frequency  
!   Eomega  = 0.033d0         !1400nm           ! laser frequency  
    Ephi    = 0.d0                              ! carrier envelope phase 
    Eto     = 1000.d0                           ! ecenter of the Gaussian envelope 
    EoPed          = 0.0755 !2E14 
    EwidthPed      = 826.638 !20fs 
    EomegaPed      = Eomega   
    EphiPed        = 0.d0     
    EtoPed         = 1000.d0       
    EoPump         = 0.053 !1E14  0.00285d0  
    EwidthPump     = Ewidth 
    EomegaPump     = 0.057d0 
    EphiPump       = 0.0d0 
    EtoPump        = 0.d0  
    includeAbsorber     = .true.                    ! switch for absorber 
    includeField        = .true.   ! .false.        ! switch for efield 
    includePedestal     = .false.                   ! switch for pedestal     
         
    includeConstantPump = .true.   ! .false.        ! switch for efield     
    useADK              = .false.                   ! ADK switch     
    calculatePowerSpectra       = .true. 
    calculateKERPowerSpectra    = .true. !.false. 
 
     
    !_____________________________Printing & Plotting Filters__________________________________ 
    printFilter = nz 
    maxFrequencyFilter = 500 
    printInterval =100 !200     
    ! print filter upper boundary check 
    if(printFilter > nz) then   
        printFilter = nz     
    end if         
    call allocateArrays(); 
     
    do nloop = 1,nz         
        Z(nloop) = minz+ (nloop)* deltaz; 
         
        P(nloop) = 2*pi*(nloop-(nz/2)-1)/(maxz-minz); 
         
        E(nloop) = 27.2*(P(nloop)**2)/(4.d0*mass); 
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    end do 
     
    call wfmath_gaussian(psiground,widthz,pz) 
     
    call setabsorber_right(fadewidth, fadestrength)     
    call printpsi(psiground,trim(concat(outputFolder,"psi_gausssian.dat")))     
     
    call potentials_init(nz)               !initialize potential arrays       
     
    call read_potential(); 
     
end subroutine init 
!-------------------------------------------------------------------------------- 
subroutine read_potential() 
    use progvars; 
    use strings; 
    use wfPot; 
    call potentials_readfromfile_activate(trim(concat(inputFolder,curve1)),1)     
    call potentials_readfromfile_activate(trim(concat(inputFolder,curve2)),2); 
    call potentials_readfromfile_activate(trim(concat(inputFolder,curve3)),3) 
    call potentials_readfromfile_activate(trim(concat(inputFolder,curve4)),4)     
end subroutine read_potential 
 
!_________________________________Allocate_________________________ 
subroutine allocateArrays     
    use progvars 
    implicit none 
    integer i,j 
    
    allocate(Z(nz), stat = iAllocStatus) 
    if (iAllocStatus /= 0) then 
        print *,"ERROR: can't allocate position vector Z" 
        stop 
    endif 
     
    allocate(psiground(nz), psigerade(nz), psiungerade(nz), psitotal(nz), stat = iAllocStatus) 
    if (iAllocStatus /= 0) then 
        print *,"ERROR: can't allocate wave function psi, psitotal, psigerade, psiungerade" 
        stop 
    endif     
 
    allocate(K(nz), P(nz), E(nz), stat = iAllocStatus) 
    if (iAllocStatus /= 0) then 
        print *,"ERROR: can't allocate K, P, E" 
        stop 
    endif 
     
    allocate(absorber(nz), stat = iAllocStatus) 
    if (iAllocStatus /= 0) then 
        print *,"ERROR: can't allocate Vector absorber" 
        stop 
    endif     
     
    if(calculatePowerSpectra .eq. .true.) then 
        allocate(fftarray(nz,nfft), stat = iAllocStatus) 
        if (iAllocStatus /= 0) then 
            print *,"ERROR: can't allocate Array FFT" 
            stop 
        endif 
        fftarray    = czero; 
    endif 
     
    if(calculateKERPowerSpectra .eq. .true.) then     
        allocate(KERfftarray(nz/2,nfft), stat = iAllocStatus) 
        if (iAllocStatus /= 0) then 
            print *,"ERROR: can't allocate Array KER_FFT" 
            stop 
        endif 
        KERfftarray = czero; 
    endif 
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    if(calculatePowerSpectra .eq. .true. .OR. calculateKERPowerSpectra .eq. .true.) then 
        allocate(fftinput(nfft), stat = iAllocStatus) 
        if (iAllocStatus /= 0) then 
            print *,"ERROR: can't allocate Array FFT Input" 
            stop 
        end if 
        fftinput = czero; 
    end if 
 
    psiground   = czero 
    psigerade   = czero 
    psiungerade = czero 
    psitotal    = czero 
     
    absorber    = 1.d0     
    K           = 0.0d0; 
    E           = 0.0d0; 
    P           = 0.0d0; 
     
end subroutine 
 
!_________________________clean___________________________ 
subroutine cleanup  
    use progvars 
    use wfPot 
    implicit none     
    deallocate(Z); 
    deallocate(psiground); 
    deallocate(psitotal); 
    deallocate(psigerade); 
    deallocate(psiungerade);  
    deallocate(absorber);     
    deallocate(K); 
    deallocate(P); 
    deallocate(E);     
    if(calculatePowerSpectra .eq. .true.) then     
        deallocate(fftarray); 
    end if     
    if(calculateKERPowerSpectra .eq. .true.) then     
        deallocate(KERfftarray); 
    end if     
    if(calculatePowerSpectra .eq. .true. .OR. calculateKERPowerSpectra .eq. .true.) then 
        deallocate(fftinput); 
    end if 
    call potentials_done();     
end subroutine 
 

 D.2 Run subroutine (tdsePumpProbe.F90) 
module tdsePumpProbe 
  implicit none 
  contains 
!-------------------------------------------------------------------------------- 5 
    subroutine Run()         
        call RunLoopOpt(); 
    end subroutine Run 
!-------------------------------------------------------------------------------- 
    subroutine RunLoopOpt()     10 
        use progvars; 
        use strings; 
        use wfMath; 
        use wfPot; 
        use tdseMethods; 15 
        use fourier; 
        use Timer; 
        implicit none  
        integer     :: fftloop, file_kertotal_endtime=710; 
        complex*16  :: psifreeg(nz),psifreeug(nz), dipole; 20 
        real*8      :: probestarttime = 0.0d0, probeendtime=0.0d0, savetime =0.0d0;         
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        character(255)  :: filename = ' '  
        call MethodInit(); 
        !init fft arrays for KER 
        call fourierInit(nz,deltaz,mass); 25 
        call potentials_setactive(2); 
        psifreeg    = psiground; 
        psifreeug   = 0.0d0; 
        ! print the enery list for KER 
        call PrintKEREnergy(); 30 
        !open files 
        open(unit=104,file=trim(concat(outputFolder,"wf_position.dat")),status="replace", 

      access="sequential",recl=1024) 
        open(unit=105,file=trim(concat(outputFolder,"wfunc_midpulse.dat")),status="replace", 
              access="sequential",recl=1024) 35 
        open(unit=106,file=trim(concat(outputFolder,"wfunc_endtime.dat")),status="replace", 
             access="sequential",recl=1024) 
        open(unit=107,file=trim(concat(outputFolder,"KER.dat")),status="replace", 
              access="sequential", recl=1024) 
        open(unit=file_kertotal_endtime,file=trim(concat(outputFolder, 40 
               "KER_fft_total_endtime.dat")),status="replace",access="sequential",recl=1024) 
                         
        call timer_printcurrenttime(); 
         
        do fftloop = 0 , nfft-1   ! external loop for fft loop  45 
         
            print *,  fftloop , " of " , nfft 
            call timer_printcurrenttime(); 
            Eto  = deltafft * fftloop; 
            probestarttime =  Eto - (Ewidth*2.0d0) 50 
            probeendtime = Eto + (Ewidth*2.0d0) 
             
            if(probestarttime <0.0d0) then  
                probestarttime = 0.0d0; 
            end if 55 
             
            psigerade   = psifreeg; 
            psiungerade = psifreeug; 
 
            !propagate field free from time zero(or savetime) to start pulse 60 
            !starttime= 0.0d0; endtime = probestarttime; 
            call PropagateInTimeEx(savetime, probestarttime,.true., .false.); 
         
            savetime = probestarttime; 
            psifreeg = psigerade;          ! save psigerade after free propogation to psifreeg 65 
            psifreeug = psiungerade;       ! save psiungerade after free propogation to psifreeug 
             
            !propagate start pulse to mid pulse - MID PULSE 
            !starttime= probestarttime; endtime = Eto; 
            call PropagateInTime(probestarttime, Eto, .true.); 70 
 
            dipole = wfmath_pos(psitotal); 
            write(104,'(E13.4E3 ,E13.4E3)') Eto, dreal(dipole); 
             
            write(105,'(E12.4,$)') cdabs(psitotal**2)  !save the wave function at mid probe pulse 75 
            write(105,*) 
 
            if(calculatePowerSpectra .eq. .true.) then 
                fftarray(:,fftloop+1) = cdabs(psitotal(:)**2)        !copy psitotal^2 to fftarray 
            endif 80 
             
            !propagate mid pulse to end pulse - END PULSE - no do 
            !starttime= Eto; endtime = probeendtime; 
            call PropagateInTime(Eto+deltat, probeendtime + Tend, .true.); 
             85 
         
            write(106,'(E12.4,$)') cdabs(psitotal**2) ! save the wave function at mid probe pulse 
            write(106,*) 
             
            if(calculateKERPowerSpectra .eq. .true.) then 90 
                call CalculateAndPrintKER(file_kertotal_endtime,psitotal,fftloop); 
                !call CalculateAndPrintKERNoShift(file_kertotal_endtime,psitotal); 
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            endif 
             
        end do  95 
         
        call timer_printcurrenttime(); 
         
        close(104); 
        close(105); 100 
         
        !close KER output file 
        close(file_kertotal_endtime);  
      
        call MethodCleanup() 105 
         
        call fourierCleanup();   
         
        call PrintEnergyFile();       
                 110 
        if(calculatePowerSpectra .eq. .true.) then 
            call PowerSpectraFFT(); 
        end if 
         
         if(calculateKERPowerSpectra .eq. .true.) then 115 
            call KERPowerSpectraFFT(); 
        end if 
    end subroutine RunLoopOpt 
   
     120 
!-------------------------------------------------------------------------------- 
    subroutine PropagateInTime(starttime,endtime,usefield) 
        real*8, intent(in) :: starttime         ! start time for propagation 
        real*8, intent(in) :: endtime           ! end time for propagation 
        logical,intent(in) :: usefield          ! whether to use efield or not 125 
         
        call PropagateInTimeEx(starttime,endtime,usefield, .true.); 
    end subroutine PropagateInTime 
 !-------------------------------------------------------------------------------- 
         130 
    subroutine PropagateInTimeEx(starttime,endtime,usefield, useadktransition) 
        use progvars; 
        use wfMath; 
        use wfPot; 
        use tdseMethods; 135 
        use adk;         
        implicit none; 
         
        real*8, intent(in) :: starttime         ! start time for propagation 
        real*8, intent(in) :: endtime           ! end time for propagation 140 
        logical,intent(in) :: usefield          ! whether to use efield or not 
         
        logical,intent(in) :: useadktransition  ! whether to use useadktransition 
 
        integer tloop, timestep; 145 
        real*8  etime, efield; 
        complex*16 rdeltat; 
         
        rdeltat = CMPLX(deltat,0.d0); 
        timestep= NINT((endtime-starttime) / deltat); 150 
         
        if(timestep>0) then 
                 
            do tloop = 0, timestep                      !internal deltat loop 
                 155 
                etime   =  starttime + (tloop*deltat);  !print *,  etime; 
                 
                if(includeField .AND. usefield) then 
                    efield  = wfmath_efield(etime) 
                else 160 
                    efield  = 0.0d0; 
                end if 
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                write(124,'(E12.4,E12.4)') etime, efield; 
                 165 
                if(useADK .eq. .true. .and. useadktransition .eq. .true. ) then 
       ! couple H2+ wave functions to the p+p curve 
                    call adk_transition(deltat/2.d0, efield);  
                end if 
                 170 
                ! do one coupling between H2+ gerade/ungerade curves for half timestep 
                call coupleH2Plus(deltat/2.d0, efield)                        
             
                ! propagate in the ungerade potential         
                call potentials_setactive(3);                         175 
                 
                call propagate(psiungerade, rdeltat,0.0d0, includeAbsorber); 
 
   ! propagate in the gerade potential 
                call potentials_setactive(2);       180 
                   
                call propagate(psigerade,rdeltat,0.0d0,includeAbsorber); 
 
                call coupleH2Plus(deltat/2.d0,efield); 
                 185 
                psitotal = psigerade + psiungerade; 
                 
             end do 
              
         end if 190 
         
    end subroutine PropagateInTimeEx 
     
!--------------------------------------------------------------------------------  
    subroutine CalculateAndPrintKER(file_kertotal_endtime,wfunc,fftloop) 195 
        use progvars; 
        use fourier; 
        use tdseMethods; 
        implicit none; 
        integer , intent(in)                       :: file_kertotal_endtime,fftloop; 200 
        complex*16, allocatable, intent(inout)     :: wfunc(:) 
         
        integer :: zloop; 
        real*8  :: Pabs,val; 
         205 
        K = czero; 
        fouriervalues = czero; 
         
        if (boundStateCutOff>0) then 
            wfunc(1:boundStateCutOff) = 0.0d0;    !250*0.02=5 a.u. 210 
        endif 
         
        call fourierForward(wfunc); 
        call FTShift(nz,fouriervalues,K);  
        do zloop= nz/2,1,-1 215 
            Pabs = abs(P(zloop)); 
            if(Pabs .eq. 0.0d0) then   
                Pabs = 1E-18;  
            end if 
             220 
            val = cdabs(K(zloop))**2 /Pabs; 
             
            KERfftarray(zloop,fftloop+1) = val; 
             
            write(file_kertotal_endtime,'(E13.4,$)') val ; 225 
        end do 
        write(file_kertotal_endtime,*); 
         
    end subroutine CalculateAndPrintKER; 
end module tdsePumpProbe 230 
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 D.3 Module defining variables (progvars.f90) 
module progvars 
   ! use vdetect; 
    implicit none 
 5 
    type :: TEnergies                            ! declare a type array for bound state energies 
        integer              :: numbound         ! number of bound states 
        real*8, pointer      :: energyarr(:)     ! the array with the bound energies 
    end type 
 10 
    type :: TStates                              ! declare a type array for bound wave functions 
        integer              :: numbound         ! number of bound states, identical to TEnergies 
        real*8, pointer      :: energyarr(:)             ! the array with the bound energies 
        complex*16, pointer  :: wavefunctions(:,:)       ! the array with the wave functions 
    end type 15 
 
 
    ! Variable definitions 
    real*8      :: mass         ! particle mass  
    real*8      :: maxz         ! maximum x 20 
    real*8      :: minz         ! minimum x    
    real*8      :: deltaz       ! step size in x direction 
     
    real*8      :: centerz      ! initial position in gaussian     
    real*8      :: maxt         ! maximum time 25 
    real*8      :: deltat       ! delta time      
    integer     :: nz           ! no of steps in x direction (no of points in grid):(maxx/deltax) 
    integer     :: nt           ! no of time steps     
     
    real*8      :: deltafft     ! time step for FFT 30 
    integer     :: nfft         ! no of time/frequency steps for FFT    
             
    real*8, pointer  :: Z(:),P(:),E(:) 
    real*8, pointer  :: potential(:), coupling(:), potderivative(:); 
     35 
    ! initial wavefunction array 
    complex*16, allocatable :: psiground(:), psigerade(:),psiungerade(:), psitotal(:) 
     
    complex*16, allocatable :: K(:); 
     40 
    complex*16  :: ii  = (0.d0,1.d0)       ! complex number i 
    complex*16  :: czero  = (0.d0,0.d0) 
    real*8      :: pi = 3.141592653589793238462643d0 
    real*8      :: Tend 
     45 
    !_________________absorber section____________________________________________________ 
    real*8  :: fadewidth                    ! the width of the absorber for the electrons 
    real*8  :: fadestrength                 ! the strength of the absorbing border potential 
    real*8, pointer :: absorber(:)          ! absorber potential 
    logical :: includeAbsorber              ! switch for using absorber 50 
     
    !_________________________Probe (E FIELD) section______________________________________ 
    real*8  :: Eo                           ! field amplitude 
    real*8  :: Eomega                       ! laser frequency  
    real*8  :: Ephi                         ! carrier envelope phase 55 
    real*8  :: Ewidth                       ! width of the envelope 
    real*8  :: Eto                          ! center of the gaussian envelope 
    logical :: includeField                 ! switch for using field 
       
 60 
    !__________________pedestal section _________________________________________________ 
     
    real*8  :: EoPed                        ! pedestal field amplitude 
    real*8  :: EwidthPed                    ! width of the pedestal envelope 
    real*8  :: EomegaPed                    ! pedestal laser frequency  65 
    real*8  :: EphiPed                      ! carrier envelope phase     
    real*8  :: EtoPed                       ! center of the gaussian envelope 
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    logical :: includePedestal              ! switch for pedestal  
     70 
    !_________________________Pump Section_______________________________________________ 
    real*8     :: EoPump       !(pulseint) 
    real*8     :: EwidthPump   !(pulselength) 
    real*8     :: EomegaPump   !(pulseomega) 
    real*8     :: EphiPump     !(pulsephase)   75 
    real*8     :: EtoPump      ! center of the pump envelope 
     
    logical     :: includeConstantPump    ! switch for setting constant pump 
  
  80 
    !_________________________ Power Spectra FFT Section_________________________________         
    real*8,  pointer    :: fftarray(:,:)    ! array for FFT 
    complex*16, pointer :: fftinput(:)      ! the complex version for one R parameter 
    logical             :: calculatePowerSpectra  = .true. ! .false.; 
     85 
    !_________________________ KER Power Spectra FFT Section_____________________________ 
    real*8,  pointer    :: KERfftarray(:,:)    ! array for FFT 
    logical             :: calculateKERPowerSpectra  = .true. !.false.; 
 
    !___________________________________Diagonalization Section________________________ 90 
    type(TStates)     :: states    ! object with wave functions and energies from diagonalization 
     
    !________________________ Memory allocation_________________________________________ 
    integer :: iAllocStatus 
     95 
    !_____________________________Printing & Plotting Filters__________________________ 
    integer :: printFilter  
    integer :: maxFrequencyFilter 
    integer :: printInterval     
     100 
    real*8  :: frequencyInTHZ = 6579.7d0 
     
    !___________________________________Method Selection_________________________________     
    character(len=2),parameter   :: CNMethod  = "CN"        ! Crank-Nicholson method     
    character(len=2),parameter   :: FTMethod  = "FT"        ! FFT method 105 
     
    character(len=2)   :: useMethod  = CNMethod 
    !character(len=2)   :: useMethod  = FTMethod          
      
    !___________________________________ Output selection _____________________________ 110 
     character(len=120) :: inputFolder  = "input/" ; 
     character(len=120) :: outputFolder; 
     character(len=120) :: curve1, curve2, curve3, curve4; 
     character(len=10)  :: molecule  = "D2"; 
      115 
     character(len=255) :: diagFolder  = "input/diag/" ; 
      
     !___________________________________ KER Bound State ____________________________ 
     integer            :: boundStateCutOff = 200; 
      120 
      
     !___________________________________ ADK Section ________________________________ 
     logical            :: useADK  = .true. ;    
        
     real*8             :: e_adk       = dexp(1.d0)    ! the Euler constant 125 
     real*8             :: pi_adk      = dacos(-1.d0)  ! well guess - what could this be... 
     ! the total charge of the ION (after the ADK transition) 
     real*8             :: ioncharge   = 1.0d0 
      
     end module progvars 130 

 D.4 Module ADK ionization (adk.f90) 
!-------------------------------------------------------------------------------- 
! DEFINITION OF 1D ADK ROUTINES 
!-------------------------------------------------------------------------------- 
! Author   : Thomas Niederhausen, Maia Magrakvelidze 5 
! Sources  : J. P. Brichta et al., J. Phys. B 39, 3769 (2006) 
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! Date     : 01 Dec 2006 
! Note     : This module is in order to avoid an IFORT compiler bug regarding 
!            array passing subroutines 
!-------------------------------------------------------------------------------- 10 
! usage: 
! 
! ADK_DEPLETE 
! ADK_TRANSITION 
!   ... 15 
! 
 
module adk 
  implicit none   
  !Declare ADK static variables to speed up the calculation of ADK rates 20 
  !lump all the R-dependent factors in here - ground 
  real*8, allocatable         :: adk_const(:) 
  ! sqrt(2*I_p) - wave vector to ionize from ground 
  real*8, allocatable         :: adk_kappa(:)   
  contains   25 
!-------------------------------------------------------------------------------- 
subroutine adk_deplete(psiin, potlo, pothi, ioncharge, pulseint, pulselength, pulseomega, 
pulsephase) 
    ! ADK routine for improved Franck-Condon transition but based on atomic ADK rates for 
    ! molecules, taken from eq. (5) of J. P. Brichta et al., J. Phys. B 39, 3769 (2006).  30 
    ! The initial wave packet WAVEFUNCTION is originally moving in the lower potential POTLO  
    ! and exposed to the given ionizing pulse. Static ADK rates for variing field is used rather 
    ! than cycle averaged in order to account for really short pulses and the rapid change in 
    ! envelope. The given wave funtion DOES NOT propagate during the pulse, thus the routine 
    ! still assumes instantaneous ADK depletion and is therefore limited to very short pulses. 35 
    ! Output is given in WAVEFUNCTION as the remaining part of the original wave function and  
    ! the ionized wave function moving in the upper potential POTHI can be estimated as  
    ! (original wave function) - (final wave function). 
 
    use wfmath 40 
    ! the initial wave function for ionization, also return value 
    complex*16, dimension(:), intent(inout) :: psiin(:)        
    ! both potential curves considered for the ADK transition         
    real*8, dimension(:), intent(in)        :: potlo, pothi    
    ! the total charge of the ION (after the ADK transition)  45 
    real*8, intent(in)                      :: ioncharge 
    ! the laser parameters 
    real*8, intent(in)                      :: pulseint, pulselength, pulseomega, pulsephase   
 
    ! lets start off with something round... 50 
    real*8, parameter                       :: pi = 3.141592653589793238462643d0   
    ! number of sampling points per laser cycle 
    integer, parameter                      :: ncyclesteps = 128    
    ! multiplier for the pulselength for total transition time 
    real*8, parameter                       :: sigmawidth = 2.d0    55 
    ! the delta t for the ADK calculation 
    real*8                                  :: timestep             
    ! well - the current time of the pulse 
    real*8                                  :: currenttime              
    ! for the time step loop 60 
    integer                                 :: nt, ntimesteps       
    ! the envelope of the electric field of the laser pulse 
    real*8                                  :: fieldenv             
    ! the laser pulse carrier envelope phase 
    real*8                                  :: fieldphase           65 
    ! thats the electric field strengh of the laser we need 
    real*8                                  :: efield               
    ! but only the magnitude of the field matters for ADK 
    real*8                                  :: fieldabs             
    ! error check 70 
    integer                                 :: iAllocStatus         
    ! for precomputing ADK constants 
    real*8, dimension(:), allocatable       :: kappa, adkconst      
    ! integrate it and you still have the same function... 
    real*8                                  :: e                    75 
    ! for loop through the R values 
    integer                                 :: nR, nRstep           
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    real*8                                  :: rate 
 
    ! size of the wave function array in R 80 
    nRstep = size(psiin)                                      
        ! allocate some memory for precomputing some static values 
        allocate(kappa(nRstep), adkconst(nRstep), stat=iAllocStatus) 
        if (iAllocStatus /= 0) then 
          print *,"ERROR: can't allocate temporary ADK work arrays" 85 
          stop 
        endif 
 
        ! now procompute the static part of the ADK rates 
        ! the Euler constant    90 
        e        = dexp(1.d0)                                      
        ! sqrt(2*I_p)/Z with I_p the ionization potential 
        kappa    = dsqrt(2.d0 * (pothi - potlo))/ioncharge 
 
        adkconst = (3.d0*e/pi)**1.5d0 & 95 
                   *(kappa**4.5d0)/(ioncharge**2.5d0) & 
                   *(4.d0*e*(kappa**4)/ioncharge)**(2.d0*ioncharge/kappa-1.5d0) 
 
        ! calculate an appropriate timestep for each ADK transition 
        timestep   = 2.d0*pi / (pulseomega * ncyclesteps) 100 
        ! how many time steps do we have in total? 
        ntimesteps = nint(sigmawidth*pulselength/timestep) 
  
        do nt=0, ntimesteps-1     ! The ADK time loop 
          currenttime = -sigmawidth*pulselength/2.d0 + timestep*nt     ! get ma a clock reading 105 
 
          ! Calculate the electric field strengh of the laser at the current time 
          fieldenv    = dsqrt(pulseint) * dexp(- 2.d0 * dlog(2.d0) * (currenttime**2) / 
                         (pulselength**2) )     
          ! the current laser phase with respect to the maximum of the pulse 110 
          fieldphase  = dmod(pulseomega*currenttime+pulsephase,2*pi)    
          efield      = fieldenv * dcos(fieldphase)                     
          ! ADK only depends on the magnitude of the electric field 
          fieldabs    = dabs(efield)                                
     115 
          ! next timestep, if field strength is not large enough 
          if (fieldabs < 1.d-4) cycle                                   
 
          ! now comes the ADK part –  
          ! loop through all R value and see how much wave function we will loose 120 
   
          !$OMP PARALLEL DO SCHEDULE(STATIC,1) PRIVATE(nR, rate) 
          do nR=1, nRstep 
              ! the current ADK rate at given internuclear distance 
              rate = adkconst(nR) * (fieldabs**(1.5d0 - 2.d0*ioncharge/kappa(nR))) & 125 
                   *dexp(-2.d0*kappa(nR)**3/(3.d0*fieldabs))            
 
              ! and the depleted ground state wave function 
              psiin(nR) = psiin(nR)*(1.d0 - dsqrt(dabs(rate*timestep)))   
          enddo  130 
          !$OMP END PARALLEL DO 
 
        enddo ! (* time loop *) 
 
        ! and finally remove the precomputed arrays again 135 
        deallocate(kappa, adkconst, stat=iAllocStatus) 
        if (iAllocStatus /= 0) then 
          print *,"ERROR: can't deallocate temporary ADK work arrays" 
          stop 
        endif 140 
 
    end subroutine adk_deplete 
!-------------------------------------------------------------------------------- 
     
    subroutine adk_init 145 
        ! initialize the ADK rate arrays and precompute the static variables 
        ! IMPORTANT: it is assumed that the GERADE curve is POTENTIAL(2) and the 
        ! UNGERADE curve is POTENTIAL(3)!!! 
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        ! The molecular ADK rates are taken from eq. (5) of J. P. Brichta et al.,  150 
        ! J. Phys. B 39, 3769 (2006) 
 
        use progvars 
        use wfPot 
        use debug 155 
 
        implicit none 
 
        integer :: adkAllocStatus     ! for I/O operation 
        integer :: nR 160 
        real*8  :: rpos, adkground    ! position and ADK rates 
        real*8  :: maxfield           ! the maximum electric field strenth of the laser 
 
        allocate(adk_const(nz),adk_kappa(nz), stat=adkAllocStatus) 
        if (adkAllocStatus /= 0) then 165 
            print *,"ERROR: can't allocate ADK arrays" 
            stop 
        endif 
 
        ! now precompute the static part of the ADK rates       170 
        ! sqrt(2*I_p) with I_p the ionization potential   
        adk_kappa = dsqrt(2.d0 * (pot_curve2 - pot_curve1))     
 
        adk_const = (3.d0*e_adk/pi_adk)**1.5d0 & 
                    *(adk_kappa**4.5d0)/(ioncharge**2.5d0) & 175 
                    *(4.d0*e_adk*(adk_kappa**4)/ioncharge)**(2.d0*ioncharge/adk_kappa-1.5d0) 
 
 
        call debugmsg (5,1,"adk_init: ADK arrays allocated, precomputed and plotted") 
 180 
    end subroutine adk_init 
 
!-------------------------------------------------------------------------------- 
 
    subroutine adk_transition(timestep, fieldstrength) 185 
        ! this routine does the ADK rate depletion of both H2+ curves to the p+p Coulomb 
        ! explosion curve. The ADK rate acts like a optical potential damping the H2+ wave  
        ! functions but cannot coherently build up the correct wave function on the 2H+ curve due 
        ! to the lost phase information. Instead we poppulate the upper potential curve  
        ! constructively and do not propagate this wave function. 190 
 
        use progvars 
 
        implicit none 
 195 
        real*8, intent(in) :: timestep; 
        real*8, intent(in) :: fieldstrength; 
        real*8             :: fieldabs; 
        integer            :: nR; 
        complex*16         :: tmpground; 200 
        real*8             :: adkground; 
 
        fieldabs = dabs(fieldstrength) 
        ! certainly nothing to do here, if there is no field 
        if (fieldabs < 1.d-4) return;                                            205 
 
        ! The ADK rate transitions are pointwise for every R. We go pointwise through the wave  
        ! functions, therefore we can have this loop running in parallel using OpenMP 
        ! Since the routine will be called quite often, it has been optimized for speed. 
 210 
        !$OMP PARALLEL DO SCHEDULE(STATIC,1) PRIVATE(nR, tmpg, tmpu, adkg, adku) 
        do nR=1, nz 
            ! the current ADK rate from the gerade curve 
            adkground = adk_const(nR) * (fieldabs**(1.5d0 - 2.d0*ioncharge/adk_kappa(nR))) & 
                            *dexp(-2.d0*adk_kappa(nR)**3/(3.d0*fieldabs))        215 
 
            ! the ADK transition amplitude subtracted from orginal 
            tmpground = psiground(nR) - (dsqrt(dabs(adkground*timestep)) * psiground(nR));         
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            ! depletion of the ground state wave function added to gerade 220 
            psigerade(nR)   = psigerade(nR) +  tmpground ;      
                         
        enddo  
        !$OMP END PARALLEL DO 
 225 
    end subroutine adk_transition 
!-------------------------------------------------------------------------------- 
    subroutine adk_done 
     
        ! destroy  the ADK arrays 230 
        use progvars   
        use debug 
 
        implicit none 
 235 
        integer :: adkAllocStatus       ! for I/O operation 
 
        deallocate(adk_const, adk_kappa, stat=adkAllocStatus) 
        if (adkAllocStatus /= 0) then 
        print *,"ERROR: can't deallocate ADK arrays" 240 
        stop 
        endif 
 
        call debugmsg (5,1,"adk_done: ADK arrays destroyed") 
         245 
    end subroutine adk_done     
 
end module adk 
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Appendix E - GAMESS input-output 
This appendix summarizes the  construction of inputs, compiling, running, and generating 

outputs in the GAMESS code [*](see remarks at the end of the Appendix). First, the construction 

of the input files for potential curve and dipole-coupling-element calculations for H2, H2
+, O2 and 

O2
+ are given. Second, the compilation procedure is summarized. Below, the Table summarizes 

the input-output files. 

Inputs Description Outputs 
A.I H2 optimization A.O. 
B.I. H2

+  optimization B.O. 
C.I. H2

+ energy C.O. 
D.I. H2 energy D.O. 
E.I. H2

+ dipole couplings - 
F.I. O2 optimization F.O. 
G.I. O2

+  optimization - 
H.I. O2

+ energy H.O. 
J.I. O2

+ dipole coupling J.O. 
Sections A.I through J.I. correspond to the list of inputs, and the sections A.O through J.O correspond to outputs. 

 

The potential-curve (and dipole coupling) calculation procedure is as follows. First, we 

optimize the geometry of a given molecule. As an example, for the H2 molecule the input file for 

geometry optimization is given below: 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    
A.I. Input for H2 optimization calculations: 

 
$CONTRL RUNTYP=optimize SCFTYP=RHF ISPHER=1 $END 
$SYSTEM TIMLIM=90000 mwords=100 $END 
$BASIS GBASIS=CCT $END 
$STATPT OPTTOL=0.00001 NSTEP=20 $END 
$DATA 
 H2 optimization - cartesian coordinates 
Dnh 4 
 
H         1.0   0.0000000000   0.0000000000   0.4407446852 
$END 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _ 
 

Here we explain each term in the input file. More details can be found below [*].  

The “control” group identifies the type of wavefunctions and the type of calculation to be 

done; it also specifies the charge and spin of the molecule, the coordinate system, the use of core 

potentials, spherical harmonics, and similar types of parameters.  
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RUNTYP=optimize --- computation type, in this case geometry optimization 

SCFTYP=RHF   ---- Restricted Hartree-Fock calculation 

ISPHER=1 --- spherical harmonics option (Cartesian basis functions). Used for basis set. 

The “system” group governs computer-related options.  

Basis types and related parameters are given in “Basis” group. 

GBASIS=CCT --- Dunning-type correlation consistent basis sets (cc-pVnZ). For the general 

case, CCn - n=T means triplet. 

“Data” covers the characteristics of the molecule, such as the number of atoms and the 

geometry. In our case, we have two H atoms located at coordinates (0, 0, 0.44…) and (0, 0, -

0.44…)  due to the D4h symmetry. For diatomic molecules symmetry should be D∞h, but 

calculations cannot be done with an infinite number of basis sets so GAMESS sets the symmetry 

for diatomic molecules as D4h. 

As an example,  geometry optimization is given for the H2
+ molecular ion below: 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    
B.I. Input for H2

+ optimization calculations: 
 
  $CONTRL RUNTYP=optimize SCFTYP=UHF ICHARG=1 MULT=2 ISPHER=1 $END 
 $SYSTEM TIMLIM=90000 mwords=100 $END 
 $BASIS GBASIS=CCT $END 
 $STATPT OPTTOL=0.00001 NSTEP=20 $END 
 $DATA 
H2+ optimization 
Dnh  4 
 
H 1.0   0.0000000000   0.0000000000   0.3561149584 
 $END 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _ 
 

The next step is to use the optimized geometry in the actual calculations for the energy. 

GAMESS calculates the energy (in a.u.) for a given internuclear distance R (in Angstroms), so 

one needs to repeat the calculations for different R (that means constructing different input files 

for different internuclear distances and running them). As an example, the energy calculations 

for one R=1.057 Å for the H2
+ molecular ion is given below: 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    
C.I. Input for H2

+ energy curve calculations: 
$CONTRL RUNTYP=energy SCFTYP=MCSCF ICHARG=1 MULT=2 ISPHER=1 $END 
$SYSTEM TIMLIM=90000 mwords=100 $END 
$BASIS GBASIS=CCT  $END 
$STATPT OPTTOL=0.00001 NSTEP=20 $END 
$DET NCORE=0 NACT=2 NELS=1 NSTATE=2 WSTATE(1)=0.1,0.9 $END 
$GUESS GUESS=MOREAD norb=28 $END 
$DATA 
H2+ energies 
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Dnh  4 
 
 H 1.0   0.0000000000   0.0000000000   0.5285771035 
 $END 
 $VEC    
 1  1 2.43921181E-01 3.14632011E-01 2.61389538E-02 0.00000000E+00 0.00000000E+00 
 1  2 2.44757728E-02 0.00000000E+00 0.00000000E+00 4.01315821E-02-2.46399747E-03 
 1  3-2.46399747E-03 4.92799493E-03 0.00000000E+00 0.00000000E+00 0.00000000E+00 
 1  4 2.43921181E-01 3.14632011E-01 2.61389538E-02 0.00000000E+00 0.00000000E+00 
 1  5-2.44757728E-02 0.00000000E+00 0.00000000E+00-4.01315821E-02-2.46399747E-03 
..... 
$END 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    
 

The “VEC” group was taken from the “file name”.dat file of the optimization run of H2
+. 

For the energy calculations at different internuclear distances, one needs to add 0.1 Å (or any 

step size interval preferred) to the internuclear distance( in this case Z=0.52857...) of H+ 

(molecule is aligned along Z axis, thus Z coordinate corresponds to the internuclear distance) . 

An example of H2 ground state calculations is given below. Please note that here 

RUNTYP = surface is used (not energy). In this case GAMESS calculates energies for different 

internuclear distances automatically. There is no need to manually add 0.1 Å and generate 

another input file for different internuclear distance. Note that for some reason the 

RUNTYP=surface does not give correct values for heavier molecules. 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    
D.I. Input for H2 energy curve calculations: 

 $CONTRL RUNTYP=surface SCFTYP=RHF CCTYP=EOM-CCSD ICHARG=0 MULT=1 $END 
 $SYSTEM TIMLIM=90000 mwords=100 $END 
 $BASIS GBASIS=STO NGAUSS=3 $END 
 $STATPT OPTTOL=0.00001 NSTEP=20 $END 
 $CCINP MAXCC=1000 $END 
 $SURF ivec1(1)=1,2 igrp1=2  
       disp1=0.1 ndisp1=50 orig1=-0.5 $END 
 $DATA 
H2 energies 
Dnh  4 
 
 H 1.0   0.0000000000   0.0000000000   0.3561149584 
 $END 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    
 
An example for the calculation of the dipole matrix elements for H2

+ states is given 
below: 
_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    

E.I. Input for H2
+ dipole coupling element calculations: 

$CONTRL RUNTYP=TRANSITN SCFTYP=NONE CITYP=GUGA ICHARG=1 MULT=2 ISPHER=1 $END 
$SYSTEM TIMLIM=90000 mwords=100 $END 
$BASIS GBASIS=CCT $END 
$STATPT OPTTOL=0.00001 NSTEP=20 $END 
$TRANST OPERAT=DM NFZC=0 IROOTS(1)=2  NOCC=3 $END 
$DRT1 GROUP=c1 IEXCIT=2 NFZC=0 NDOC=0 NALP=1 NEXT=-1 NVAL=2 $END 
$DATA 
H2+ energies 
Dnh  4 
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H    1.0   0.0000000000   0.0000000000   0.5285771035 
 $END 
 $VEC1    
 1  1 2.43921181E-01 3.14632011E-01 2.61389538E-02 0.00000000E+00 0.00000000E+00 
 1  2 2.44757728E-02 0.00000000E+00 0.00000000E+00 4.01315821E-02-2.46399747E-03 
 1  3-2.46399747E-03 4.92799493E-03 0.00000000E+00 0.00000000E+00 0.00000000E+00 
1 4 2.43921181E-01 3.14632011E-01 2.61389538E-02 0.00000000E+00 0.00000000E+00 
…. 
$END 

 
_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  

 
H2 (H2

+) molecule outputs 
_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  

A.O. Output for H2 optimization calculations: 
...  
 ECHO OF THE FIRST FEW INPUT CARDS - 
 INPUT CARD>! Example 1 optimization                                                         
 INPUT CARD> $CONTRL RUNTYP=optimize SCFTYP=RHF $END                                         
 INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END                                            
 INPUT CARD> $BASIS GBASIS=STO NGAUSS=3 $END                                                 
 INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END                                            
 INPUT CARD> $DATA                                                                           
 INPUT CARD>H2 optimization - cartesian coordinates                                          
 INPUT CARD>Dnh 4                                                                            
 INPUT CARD>                                                                                 
 INPUT CARD>H         1.0   0.0000000000   0.0000000000   0.4407446852                       
 INPUT CARD> $END                                                                            
  100000000 WORDS OF MEMORY AVAILABLE 
 
     BASIS OPTIONS 
     ------------- 
     GBASIS=STO          IGAUSS=       3      POLAR=NONE     
     NDFUNC=       0     NFFUNC=       0     DIFFSP=       F 
     NPFUNC=       0      DIFFS=       F     BASNAM=         
 
 
     RUN TITLE 
     --------- 
 H2 optimization - cartesian coordinates                                          
 
 THE POINT GROUP OF THE MOLECULE IS DNH      
 THE ORDER OF THE PRINCIPAL AXIS IS     4 
 
 ATOM      ATOMIC                      COORDINATES (BOHR) 
           CHARGE         X                   Y                   Z 
 H           1.0     0.0000000000        0.0000000000       -0.8328866856 
 H           1.0     0.0000000000        0.0000000000        0.8328866856 
 
          INTERNUCLEAR DISTANCES (ANGS.) 
          ------------------------------ 
 
                1 H          2 H      
 
   1 H       0.0000000    0.8814894 * 
   2 H       0.8814894 *  0.0000000   
 
  * ... LESS THAN  3.000 
 
 
     ATOMIC BASIS SET 
     ---------------- 
 THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED 
 THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY 
 
  SHELL TYPE  PRIMITIVE        EXPONENT          CONTRACTION COEFFICIENT(S) 
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 H          
 
      2   S       1             3.4252509    0.154328967295 
      2   S       2             0.6239137    0.535328142282 
      2   S       3             0.1688554    0.444634542185 
 
 TOTAL NUMBER OF BASIS SET SHELLS             =    2 
 NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS =    2 
 NUMBER OF ELECTRONS                          =    2 
 CHARGE OF MOLECULE                           =    0 
 SPIN MULTIPLICITY                            =    1 
 NUMBER OF OCCUPIED ORBITALS (ALPHA)          =    1 
 NUMBER OF OCCUPIED ORBITALS (BETA )          =    1 
 TOTAL NUMBER OF ATOMS                        =    2 
 THE NUCLEAR REPULSION ENERGY IS        0.6003217588 
 
 THIS MOLECULE IS RECOGNIZED AS BEING LINEAR, 
 ORBITAL LZ DEGENERACY TOLERANCE ETOLLZ= 1.00E-06 
 
     $NEO OPTIONS 
     ------------ 
     NUNIQN=       0     BASNUC=DZSNB        NEOSCF=NONE     
     NEOCI =NONE         NUMULT=       2     NUCST =       1 
     NAUXNB=       0     VNUCEX=       F     NUCOPT=       F 
     NTAUXB=       0     NEOHSS=       F     HSSINI=READH    
     HSSUPD=POWELLUP     DIRNUC=       F     SYMNUC=       F 
     QMTOLN= 0.0E+00     USRDEX=       F 
     POSNEO=       F     POSPRP=       F 
     NEONCI=       F     LOCORB=       0 
 
     $CONTRL OPTIONS 
     --------------- 
 SCFTYP=RHF          RUNTYP=OPTIMIZE     EXETYP=RUN      
 MPLEVL=       0     CITYP =NONE         CCTYP =NONE         VBTYP =NONE     
 DFTTYP=NONE         TDDFT =NONE     
 MULT  =       1     ICHARG=       0     NZVAR =       0     COORD =UNIQUE   
 PP    =NONE         RELWFN=NONE         LOCAL =NONE         NUMGRD=       F 
 ISPHER=      -1     NOSYM =       0     MAXIT =      30     UNITS =ANGS     
 PLTORB=       F     MOLPLT=       F     AIMPAC=       F     FRIEND=         
 NPRINT=       7     IREST =       0     GEOM  =INPUT    
 NORMF =       0     NORMP =       0     ITOL  =      20     ICUT  =       9 
 INTTYP=BEST         GRDTYP=BEST         QMTTOL= 1.0E-06 
 
     $SYSTEM OPTIONS 
     --------------- 
  REPLICATED MEMORY=   100000000 WORDS (ON EVERY NODE). 
 DISTRIBUTED MEMDDI=           0 MILLION WORDS IN AGGREGATE, 
 MEMDDI DISTRIBUTED OVER   1 PROCESSORS IS           0 WORDS/PROCESSOR. 
 TOTAL MEMORY REQUESTED ON EACH PROCESSOR=   100000000 WORDS. 
 TIMLIM=       90000.00 MINUTES, OR      62.5 DAYS. 
 PARALL= F  BALTYP=  DLB     KDIAG=    0  COREFL= F 
 MXSEQ2=     300 MXSEQ3=     150 
 
          ---------------- 
          PROPERTIES INPUT 
          ---------------- 
 
 MOMENTS            FIELD           POTENTIAL          DENSITY 
 IEMOM =       1   IEFLD =       0   IEPOT =       0   IEDEN =       0 
 WHERE =COMASS     WHERE =NUCLEI     WHERE =NUCLEI     WHERE =NUCLEI   
 OUTPUT=BOTH       OUTPUT=BOTH       OUTPUT=BOTH       OUTPUT=BOTH     
 IEMINT=       0   IEFINT=       0                     IEDINT=       0 
                                                       MORB  =       0 
          EXTRAPOLATION IN EFFECT 
 ORBITAL PRINTING OPTION: NPREO=     1     2     2     1 
 
     ------------------------------- 
     INTEGRAL TRANSFORMATION OPTIONS 
     ------------------------------- 
     NWORD  =         0     CUTOFF = 1.0E-09 
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     MPTRAN =         0     DIRTRF =       F 
     AOINTS =DUP      
 
          ---------------------- 
          INTEGRAL INPUT OPTIONS 
          ---------------------- 
 NOPK  =       1 NORDER=       0 SCHWRZ=       F 
 
     ------------------------------------------ 
     THE POINT GROUP IS DNH, NAXIS= 4, ORDER=16 
     ------------------------------------------ 
 
     DIMENSIONS OF THE SYMMETRY SUBSPACES ARE 
 A1G =    1     A1U =    0     B1G =    0     B1U =    0     A2G =    0 
 A2U =    1     B2G =    0     B2U =    0     EG  =    0     EU  =    0 
 
 ..... DONE SETTING UP THE RUN ..... 
 STEP CPU TIME =     0.02 TOTAL CPU TIME =        0.0 (    0.0 MIN) 
 TOTAL WALL CLOCK TIME=        0.0 SECONDS, CPU UTILIZATION IS 106.67% 
 
 
          ----------------------------- 
          STATIONARY POINT LOCATION RUN 
          ----------------------------- 
 
 OBTAINING INITIAL HESSIAN, HESS=GUESS    
 CARTESIAN COORDINATE OPTIMIZATION USING BADGER'S RULE FORCE CONSTANT GUESS 
 
          PARAMETERS CONTROLLING GEOMETRY SEARCH ARE 
          METHOD =QA                  UPHESS =BFGS     
          NNEG   =         0          NFRZ   =         0 
          NSTEP  =        20          IFOLOW =         1 
          HESS   =GUESS               RESTAR =         F 
          IHREP  =         0          HSSEND =         F 
          NPRT   =         0          NPUN   =         0 
          OPTTOL = 1.000E-05          RMIN   = 1.500E-03 
          RMAX   = 1.000E-01          RLIM   = 7.000E-02 
          DXMAX  = 3.000E-01          PURIFY =         F 
          MOVIE  =         F          TRUPD  =         T 
          TRMAX  = 5.000E-01          TRMIN  = 5.000E-02 
          ITBMAT =         5          STPT   =         F 
          STSTEP = 1.000E-02          PROJCT=          T 
 
 BEGINNING GEOMETRY SEARCH POINT NSERCH=   0 ... 
... 
    ***** EQUILIBRIUM GEOMETRY LOCATED ***** 
 COORDINATES OF SYMMETRY UNIQUE ATOMS (ANGS) 
   ATOM   CHARGE       X              Y              Z 
 ------------------------------------------------------------ 
 H           1.0   0.0000000000   0.0000000000   0.3561149584 
 COORDINATES OF ALL ATOMS ARE (ANGS) 
   ATOM   CHARGE       X              Y              Z 
 ------------------------------------------------------------ 
 H           1.0  -0.0000000000  -0.0000000000  -0.3561149584 
 H           1.0   0.0000000000   0.0000000000   0.3561149584 
 
          INTERNUCLEAR DISTANCES (ANGS.) 
          ------------------------------ 
 
                1 H          2 H      
 
   1 H       0.0000000    0.7122299 * 
   2 H       0.7122299 *  0.0000000   
 
  * ... LESS THAN  3.000 
... 

_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  
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The equilibrium geometry (in red) is given in Angstroms. One of the H atoms is located 
at Z = 0.356 Å and the other is at Z = - 0.356 Å. The internuclear distance in atomic units R = 
2*0.35611 Å / 0.529 = 1.35 a.u. 
 
_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  

B.O. Output for H2
+ optimization calculations: 

 ... 
 ECHO OF THE FIRST FEW INPUT CARDS - 
 INPUT CARD> $CONTRL RUNTYP=optimize SCFTYP=UHF ICHARG=1 MULT=2 ISPHER=1 $END                
 INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END                                            
 INPUT CARD> $BASIS GBASIS=CCT $END                                                          
 INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END                                            
 INPUT CARD> $DATA                                                                           
 INPUT CARD>H2+ optimization                                                                 
 INPUT CARD>Dnh  4                                                                           
 INPUT CARD>                                                                                 
 INPUT CARD>H 1.0   0.0000000000   0.0000000000   0.3561149584                               
 INPUT CARD> $END                                                                            
 INPUT CARD>                                                                                 
  100000000 WORDS OF MEMORY AVAILABLE 
 
     BASIS OPTIONS 
     ------------- 
     GBASIS=CCT          IGAUSS=       0      POLAR=NONE     
     NDFUNC=       0     NFFUNC=       0     DIFFSP=       F 
     NPFUNC=       0      DIFFS=       F     BASNAM=         
 
 
     RUN TITLE 
     --------- 
 H2+ optimization                                                                 
 
 THE POINT GROUP OF THE MOLECULE IS DNH      
 THE ORDER OF THE PRINCIPAL AXIS IS     4 
 
 ATOM      ATOMIC                      COORDINATES (BOHR) 
           CHARGE         X                   Y                   Z 
 H           1.0     0.0000000000        0.0000000000       -0.6729596915 
 H           1.0     0.0000000000        0.0000000000        0.6729596915 
 
          INTERNUCLEAR DISTANCES (ANGS.) 
          ------------------------------ 
 
                1 H          2 H      
 
   1 H       0.0000000    0.7122299 * 
   2 H       0.7122299 *  0.0000000   
 
  * ... LESS THAN  3.000 
... 
 
      ***** EQUILIBRIUM GEOMETRY LOCATED ***** 
 COORDINATES OF SYMMETRY UNIQUE ATOMS (ANGS) 
   ATOM   CHARGE       X              Y              Z 
 ------------------------------------------------------------ 
 H           1.0  -0.0000000000   0.0000000000   0.5285771035 
 COORDINATES OF ALL ATOMS ARE (ANGS) 
   ATOM   CHARGE       X              Y              Z 
 ------------------------------------------------------------ 
 H           1.0  -0.0000000000   0.0000000000  -0.5285771035 
 H           1.0  -0.0000000000   0.0000000000   0.5285771035 
 
          INTERNUCLEAR DISTANCES (ANGS.) 
          ------------------------------ 
 
                1 H          2 H      
 
   1 H       0.0000000    1.0571542 * 
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   2 H       1.0571542 *  0.0000000   
 
  * ... LESS THAN  3.000 
... 

_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  
 
The equilibrium geometry (in red) is given in Angstroms. One of the H atoms is located 

at Z = 0.5286Å and the other is at Z = - 0.5286Å. The internuclear distance in atomic units R = 
2*0.35611Å/0.529 = 1.998 a.u. 
                                          
_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _ _ 

D.O. Output for H2
+ energy calculations: 

 
  ECHO OF THE FIRST FEW INPUT CARDS - 
 INPUT CARD> $CONTRL RUNTYP=energy SCFTYP=MCSCF ICHARG=1 MULT=2 ISPHER=1 $END                
 INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END                                            
 INPUT CARD> $BASIS GBASIS=CCT  $END                                                         
 INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END                                            
 INPUT CARD> $DET NCORE=0 NACT=2 NELS=1 NSTATE=2 WSTATE(1)=0.1,0.9 $END                      
 INPUT CARD> $GUESS GUESS=MOREAD norb=28 $END                                                
 INPUT CARD> $DATA                                                                           
 INPUT CARD>H2+ energies                                                                     
 INPUT CARD>Dnh  4                                                                           
 INPUT CARD>                                                                                 
 INPUT CARD> H 1.0   0.0000000000   0.0000000000   0.5285771035                              
 INPUT CARD> $END                                                                            
 INPUT CARD> $VEC                                                                            
 INPUT CARD> 1  1 2.43921181E-01 3.14632011E-01 2.61389538E-02 0.00000000E+00 0.00000000E+00 
 INPUT CARD> 1  2 2.44757728E-02 0.00000000E+00 0.00000000E+00 4.01315821E-02-2.46399747E-03 

... 
CI EIGENVECTORS WILL BE LABELED IN GROUP=C1       
 PRINTING ALL NON-ZERO CI COEFFICIENTS 
 
 STATE   1  ENERGY=        -0.6022446912  S=  0.50  SZ=  0.50  SPACE SYM=A    
 
ALPH|BETA| COEFFICIENT 
----|----|------------ 
 10 | 00 |   1.0000000 
 
 STATE   2  ENERGY=        -0.1664191926  S=  0.50  SZ=  0.50  SPACE SYM=A    
 
ALPH|BETA| COEFFICIENT 
----|----|------------ 
 01 | 00 |   1.0000000 

_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _ _ 
State 1 is 1sσg and state 2 is 2pσu. 
_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _ _ 

C.O. Output for H2 energy calculations: 
...  
 ECHO OF THE FIRST FEW INPUT CARDS - 
 INPUT CARD>! Example 2 energy                                                               
 INPUT CARD> $CONTRL RUNTYP=surface SCFTYP=RHF CCTYP=EOM-CCSD ICHARG=0 MULT=1 $END           
 INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END                                            
 INPUT CARD> $BASIS GBASIS=STO NGAUSS=3 $END                                                 
 INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END                                            
 INPUT CARD> $CCINP MAXCC=1000 $END                                                          
 INPUT CARD> $SURF ivec1(1)=1,2 igrp1=2                                                      
 INPUT CARD>       disp1=0.1 ndisp1=50 orig1=-0.5 $END                                       
 INPUT CARD> $DATA                                                                           
 INPUT CARD>H2 energies                                                                      
 INPUT CARD>Dnh  4                                                                           
 INPUT CARD>                                                                                 
 INPUT CARD>H 1.0   0.0000000000   0.0000000000   0.3561149584                               
 INPUT CARD> $END                                                                            
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 INPUT CARD>                                                                                 
  100000000 WORDS OF MEMORY AVAILABLE 
 
     BASIS OPTIONS 
     ------------- 
     GBASIS=STO          IGAUSS=       3      POLAR=NONE     
     NDFUNC=       0     NFFUNC=       0     DIFFSP=       F 
     NPFUNC=       0      DIFFS=       F     BASNAM=         
 
 
     RUN TITLE 
     --------- 
 H2 energies    
... 
               ---- SUMMARY OF EOM-CCSD CALCULATIONS ---- 
 
                 EXCITATION      EXCITATION      TOTAL 
    SYMMETRY     ENERGY (H)      ENERGY (EV)     ENERGY (H)          ITERATIONS 
       A         1.97041385        53.618         1.98943600          CONVERGED 
   
 ..... DONE WITH EOM-CCSD ..... 
 STEP CPU TIME =     0.06 TOTAL CPU TIME =        0.2 (    0.0 MIN) 
 TOTAL WALL CLOCK TIME=        1.3 SECONDS, CPU UTILIZATION IS  14.73% 
 ---- SURFACE MAPPING GEOMETRY ---- 
 COORD 1=-0.500 COORD 2= 0.000 
 HAS ENERGY VALUE       0.019022 
 H      0.00000   0.00000  -0.35611 
 H      0.00000   0.00000  -0.14389 
 ---------------------------------- 
... 
               ---- SUMMARY OF EOM-CCSD CALCULATIONS ---- 
 
                 EXCITATION      EXCITATION      TOTAL 
    SYMMETRY     ENERGY (H)      ENERGY (EV)     ENERGY (H)          ITERATIONS 
       A         1.72993576        47.074         1.07478324          CONVERGED 
   
 ..... DONE WITH EOM-CCSD ..... 
 STEP CPU TIME =     0.00 TOTAL CPU TIME =        0.2 (    0.0 MIN) 
 TOTAL WALL CLOCK TIME=        1.3 SECONDS, CPU UTILIZATION IS  15.50% 
 ---- SURFACE MAPPING GEOMETRY ---- 
 COORD 1=-0.400 COORD 2= 0.000 
 HAS ENERGY VALUE      -0.655153 
 H      0.00000   0.00000  -0.35611 
 H      0.00000   0.00000  -0.04389 
 ---------------------------------- 
...  

_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _ _ 
 

As mentioned above, GAMESS calculates energies for different internuclear distances (in 
red) with steps of 0.1 Å that can be changed by changing  disp1=0.1.  
                        
_  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _ _ 

 
Inputs for O2 (O2

+) molecule 
_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  

F.I. Input for O2 optimization calculations: 
 
 $CONTRL RUNTYP=optimize SCFTYP=ROHF MULT=3 ISPHER=1 $END 
 $SYSTEM TIMLIM=90000 mwords=100 $END 
 $BASIS GBASIS=CCT $END 
 $STATPT OPTTOL=0.00001 NSTEP=20 $END 
 $DATA 
O2 optimization - cartesian coordinates 
Dnh 4 
 



174 

 

 O         8.0   0.0000000000   0.0000000000   0.72 
 $END 

 
_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  

G.I. Input for O2
+ optimization calculations: 

 
 $CONTRL RUNTYP=optimize SCFTYP=ROHF ICHARG=1 MULT=2 ISPHER=1 $END 
 $SYSTEM TIMLIM=90000 mwords=100 $END 
 $BASIS GBASIS=CCT $END 
 $STATPT OPTTOL=0.00001 NSTEP=20 $END 
 $DATA 
O2 optimization - cartesian coordinates 
Dnh 4 
 
 O         8.0   0.0000000000   0.0000000000   0.72 
 $END 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  
H.I. Input for O2

+ energy curve calculations: 
  
 $CONTRL RUNTYP=energy SCFTYP=MCSCF ICHARG=1 MULT=2 ISPHER=1 $END 
 $SYSTEM TIMLIM=90000 mwords=100 $END 
 $BASIS GBASIS=CCT $END 
 $SURF ivec1(1)=1,2 igrp1=2  
       disp1=0.1 ndisp1=80 orig1=0 $END 
 $DET NCORE=4 NACT=6 NELS=7 NSTATE=22 $END 
 $DET  WSTATE(1)=1,1,1,1,1,1,1,1,1,1,1,1,1,1 $END 
 $DET IROOT=14 $END 
 $GUESS GUESS=MOREAD norb=60 $END 
 $DATA 
O2p MCSCF energy- cartesian coordinates 
Dnh 4 
 
 O         8.0   0.0000000000  0.0000000000     0.5435216138 
 $END 
 $VEC    
 1  1 6.90462181E-01 5.90682505E-04 3.08141581E-02 1.25056362E-03-0.00000000E+00 
 1  2-0.00000000E+00 2.05835947E-03-0.00000000E+00-0.00000000E+00-4.74935703E-04 
 1  3-0.00000000E+00-0.00000000E+00 1.89563601E-04-7.68704919E-05-7.68704919E-05 
 1  4 1.53740984E-04-0.00000000E+00-0.00000000E+00-0.00000000E+00 1.30415410E-04 
…. 
$END 
 
_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    
 

The “VEC” group was taken from the ***.dat file of the optimization run of O2
+. 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    
J.I. Input for O2

+ dipole coupling element calculations: 
   $CONTRL RUNTYP=TRANSITN SCFTYP=NONE CITYP=GUGA ISPHER=1 ICHARG=1 MULT=2 $END 
 $SYSTEM TIMLIM=90000 mwords=100 $END 
 $BASIS GBASIS=CCT $END 
 $STATPT OPTTOL=0.00001 NSTEP=20 $END 
 !$DET NCORE=4 NACT=6 NELS=5 $END 
 !$GUESS GUESS=MOREAD norb=60 $END 
 $GUGDIA ITERMX=300 $END 
 $TRANST OPERAT=DM NFZC=2 IROOTS(1)=16 NOCC=11 $END 
 $DRT1 GROUP=c1 IEXCIT=2 NFZC=2 NDOC=4 NALP=3 NEXT=-1 NVAL=2 $END 
 $DATA 
O2p MCSCF energy- cartesian coordinates 
Dnh 4 
 
 O         8.0   0.0000000000  0.0000000000     0.5435216138 
 $END 
 $VEC1    
 1  1 6.90602729E-01 8.53547880E-04 3.05852604E-02 8.28470661E-04-0.00000000E+00 
 1  2-0.00000000E+00 3.05629834E-03-0.00000000E+00-0.00000000E+00 7.59436047E-04 
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 1  3-0.00000000E+00-0.00000000E+00 4.99154416E-04-2.15514717E-04-2.15514717E-04 
 1  4 4.31029435E-04-0.00000000E+00-0.00000000E+00-0.00000000E+00 9.31725941E-05 
…. 
$END 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _    
 

outputs for O2 (O2
+) molecule  

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  
F.O. Output for O2 optimization calculations 

   ...          
 ECHO OF THE FIRST FEW INPUT CARDS - 
 INPUT CARD> $CONTRL RUNTYP=optimize SCFTYP=ROHF MULT=3 ISPHER=1 $END                        
 INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END                                            
 INPUT CARD> $BASIS GBASIS=CCT $END                                                          
 INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END                                            
 INPUT CARD> $DATA                                                                           
 INPUT CARD>O2 optimization - cartesian coordinates                                          
 INPUT CARD>Dnh 4                                                                            
 INPUT CARD>                                                                                 
 INPUT CARD> O         8.0   0.0000000000   0.0000000000   0.72                              
 INPUT CARD> $END                                                                            
  100000000 WORDS OF MEMORY AVAILABLE 
 
     BASIS OPTIONS 
     ------------- 
     GBASIS=CCT          IGAUSS=       0      POLAR=NONE     
     NDFUNC=       0     NFFUNC=       0     DIFFSP=       F 
     NPFUNC=       0      DIFFS=       F     BASNAM=         
 
 
     RUN TITLE 
     --------- 
 O2 optimization - cartesian coordinates                                          
 
 THE POINT GROUP OF THE MOLECULE IS DNH      
 THE ORDER OF THE PRINCIPAL AXIS IS     4 
 
 ATOM      ATOMIC                      COORDINATES (BOHR) 
           CHARGE         X                   Y                   Z 
 O           8.0     0.0000000000        0.0000000000       -1.3606027112 
 O           8.0     0.0000000000        0.0000000000        1.3606027112 
 
          INTERNUCLEAR DISTANCES (ANGS.) 
          ------------------------------ 
 
                1 O          2 O      
 
   1 O       0.0000000    1.4400000 * 
   2 O       1.4400000 *  0.0000000   
 
  * ... LESS THAN  3.000 
 
 
     ATOMIC BASIS SET 
     ---------------- 
 THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED 
 THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY 
 
  SHELL TYPE  PRIMITIVE        EXPONENT          CONTRACTION COEFFICIENT(S) 
 
 O          
 
     11   S       1         15330.0000000    0.000520198307 
     11   S       2          2299.0000000    0.004023344781 
     11   S       3           522.4000000    0.020729083329 
     11   S       4           147.3000000    0.081082327080 
     11   S       5            47.5500000    0.236226352118 
     11   S       6            16.7600000    0.443518209420 
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     11   S       7             6.2070000    0.358670588689 
     11   S       8             0.6882000   -0.008349797237 
 
     12   S       9         15330.0000000   -0.000197236012 
     12   S      10          2299.0000000   -0.001535010700 
     12   S      11           522.4000000   -0.007951183914 
     12   S      12           147.3000000   -0.032113452892 
     12   S      13            47.5500000   -0.100269643049 
     12   S      14            16.7600000   -0.234047111838 
     12   S      15             6.2070000   -0.301410927756 
     12   S      16             0.6882000    1.034919649508 
 
     13   S      17             1.7520000    1.000000000000 
 
     14   S      18             0.2384000    1.000000000000 
 
     15   P      19            34.4600000    0.041163489568 
     15   P      20             7.7490000    0.257762835858 
     15   P      21             2.2800000    0.802419274427 
 
     16   P      22             0.7156000    1.000000000000 
 
     17   P      23             0.2140000    1.000000000000 
 
     18   D      24             2.3140000    1.000000000000 
 
     19   D      25             0.6450000    1.000000000000 
 
     20   F      26             1.4280000    1.000000000000 
 
 TOTAL NUMBER OF BASIS SET SHELLS             =   20 
 NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS =   70 
 NOTE: THIS RUN WILL RESTRICT THE MO VARIATION SPACE TO SPHERICAL HARMONICS. 
 THE NUMBER OF ORBITALS KEPT IN THE VARIATIONAL SPACE WILL BE PRINTED LATER. 
 NUMBER OF ELECTRONS                          =   16 
 CHARGE OF MOLECULE                           =    0 
 SPIN MULTIPLICITY                            =    3 
 NUMBER OF OCCUPIED ORBITALS (ALPHA)          =    9 
 NUMBER OF OCCUPIED ORBITALS (BETA )          =    7 
 TOTAL NUMBER OF ATOMS                        =    2 
 THE NUCLEAR REPULSION ENERGY IS       23.5189888551 
 
 THIS MOLECULE IS RECOGNIZED AS BEING LINEAR, 
 ORBITAL LZ DEGENERACY TOLERANCE ETOLLZ= 1.00E-06 
 
     $NEO OPTIONS 
     ------------ 
     NUNIQN=       0     BASNUC=DZSNB        NEOSCF=NONE     
     NEOCI =NONE         NUMULT=       2     NUCST =       1 
     NAUXNB=       0     VNUCEX=       F     NUCOPT=       F 
     NTAUXB=       0     NEOHSS=       F     HSSINI=READH    
     HSSUPD=POWELLUP     DIRNUC=       F     SYMNUC=       F 
     QMTOLN= 0.0E+00     USRDEX=       F 
     POSNEO=       F     POSPRP=       F 
     NEONCI=       F     LOCORB=       0 
 
     $CONTRL OPTIONS 
     --------------- 
 SCFTYP=ROHF         RUNTYP=OPTIMIZE     EXETYP=RUN      
 MPLEVL=       0     CITYP =NONE         CCTYP =NONE         VBTYP =NONE     
 DFTTYP=NONE         TDDFT =NONE     
 MULT  =       3     ICHARG=       0     NZVAR =       0     COORD =UNIQUE   
 PP    =NONE         RELWFN=NONE         LOCAL =NONE         NUMGRD=       F 
 ISPHER=       1     NOSYM =       0     MAXIT =      30     UNITS =ANGS     
 PLTORB=       F     MOLPLT=       F     AIMPAC=       F     FRIEND=         
 NPRINT=       7     IREST =       0     GEOM  =INPUT    
 NORMF =       0     NORMP =       0     ITOL  =      20     ICUT  =       9 
 INTTYP=BEST         GRDTYP=BEST         QMTTOL= 1.0E-06 
... 
      ***** EQUILIBRIUM GEOMETRY LOCATED ***** 
 COORDINATES OF SYMMETRY UNIQUE ATOMS (ANGS) 
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   ATOM   CHARGE       X              Y              Z 
 ------------------------------------------------------------ 
 O           8.0  -0.0000000000   0.0000000000   0.5761650783 
 COORDINATES OF ALL ATOMS ARE (ANGS) 
   ATOM   CHARGE       X              Y              Z 
 ------------------------------------------------------------ 
 O           8.0  -0.0000000000   0.0000000000  -0.5761650783 
 O           8.0  -0.0000000000   0.0000000000   0.5761650783 
 
          INTERNUCLEAR DISTANCES (ANGS.) 
          ------------------------------ 
 
                1 O          2 O      
 
   1 O       0.0000000    1.1523302 * 
   2 O       1.1523302 *  0.0000000   
 
  * ... LESS THAN  3.000 
 
 
          NUCLEAR ENERGY    =       29.3903129730 
          ELECTRONIC ENERGY =     -179.0487339259 
          TOTAL ENERGY      =     -149.6584209529 
... 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  
 
 The equilibrium geometry (in red) is given in Angstroms. One O atom is at Z = 0.576 Å 

and the other is at Z = - 0.576 Å. The internuclear distance in atomic units R = ( 2 * 0.576165 / 
0.529 ) Å = 2.178318 a.u. 
 
_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  

H.O. Output for O2
+ energy calculations 

... 
 ECHO OF THE FIRST FEW INPUT CARDS - 
 INPUT CARD> $CONTRL RUNTYP=energy SCFTYP=MCSCF ICHARG=1 MULT=2 ISPHER=1 $END                
 INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END                                            
 INPUT CARD> $BASIS GBASIS=CCT $END                                                          
 INPUT CARD> $SURF ivec1(1)=1,2 igrp1=2                                                      
 INPUT CARD>       disp1=0.1 ndisp1=80 orig1=0 $END                                          
 INPUT CARD> $DET NCORE=4 NACT=6 NELS=7 NSTATE=22 $END                                       
 INPUT CARD> $DET  WSTATE(1)=1,1,1,1,1,1,1,1,1,1,1,1,1,1 $END                                
 INPUT CARD> $DET IROOT=14 $END                                                              
 INPUT CARD> $GUESS GUESS=MOREAD norb=60 $END                                                
 INPUT CARD> $DATA                                                                           
 INPUT CARD>O2p MCSCF energy- cartesian coordinates                                          
 INPUT CARD>Dnh 4                                                                            
 INPUT CARD>                                                                                 
 INPUT CARD> O         8.0   0.0000000000  0.0000000000     0.5435216138                     
 INPUT CARD> $END                                                                            
 INPUT CARD> $VEC                                                                            
 INPUT CARD> 1  1 6.90462181E-01 5.90682505E-04 3.08141581E-02 1.25056362E-03-0.00000000E+00 
... 
         -------------------- 
          LAGRANGIAN CONVERGED 
          -------------------- 
 
 FINAL MCSCF ENERGY IS     -148.7396712377 AFTER  11 ITERATIONS 
 
 -MCCI- BASED ON OPTIMIZED ORBITALS 
 ---------------------------------- 
 
 PLEASE NOTE: IF THE ACTIVE ORBITALS ARE CANONICALIZED BELOW, 
 THE FOLLOWING CI EXPANSION COEFFICIENTS AND THE DENSITY DO NOT 
 CORRESPOND TO THE PRINTED ORBITALS.  THE PRINTED EXPANSIONS MATCH 
 THE ORBITALS USED DURING THE LAST ITERATION.  IF YOU WISH TO SEE 
 CI EXPANSIONS BASED ON THE CANONICAL (OR NATURAL) ORBITALS, YOU 
 MUST RUN A CI CALCULATION WITH THAT ORBITAL CHOICE READ IN $VEC. 
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 CI EIGENVECTORS WILL BE LABELED IN GROUP=C1       
 PRINTING CI COEFFICIENTS LARGER THAN  0.050000 
 
 STATE   1  ENERGY=      -149.3507802341  S=  0.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 111010 | 111000 |   0.9624018 
 101110 | 101100 |  -0.1701232 
 101110 | 011010 |   0.1164666 
 111010 | 001110 |   0.0849530 
 110011 | 011010 |   0.0582635 
 111010 | 010011 |   0.0543940 
 110011 | 110001 |   0.0524254 
 110011 | 101100 |  -0.0522195 
 
 STATE   2  ENERGY=      -149.3506810746  S=  0.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 111100 | 111000 |   0.9623072 
 011110 | 011010 |   0.1708770 
 011110 | 101100 |  -0.1163062 
 111100 | 001110 |   0.0847515 
 110101 | 101100 |  -0.0580896 
 111100 | 100101 |  -0.0542410 
 110101 | 110001 |   0.0524191 
 110101 | 011010 |   0.0523061 
 
 STATE   3  ENERGY=      -149.0967759996  S=  1.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 011110 | 111000 |   0.5720578 
 111100 | 011010 |   0.5720578 
 111010 | 011100 |  -0.5720578 
 
 STATE   4  ENERGY=      -149.0964642230  S=  1.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 111100 | 101010 |   0.5720447 
 111010 | 101100 |  -0.5720447 
 101110 | 111000 |   0.5720447 
 
 STATE   5  ENERGY=      -149.0520698627  S=  0.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 111010 | 011100 |   0.6158673 
 111100 | 101100 |  -0.5472204 
 011110 | 111000 |   0.5046989 
 111010 | 101010 |   0.1743647 
 111100 | 011010 |   0.1111683 
 011110 | 001110 |  -0.0637585 
 101110 | 010101 |  -0.0518447 
 100111 | 011100 |   0.0505619 
 
 STATE   6  ENERGY=      -149.0520086510  S=  0.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 111100 | 101010 |   0.6129513 
 111010 | 011010 |  -0.5502528 
 101110 | 111000 |  -0.5052103 
 111100 | 011100 |   0.1758562 
 111010 | 101100 |   0.1077410 
 101110 | 001110 |   0.0633246 
 011110 | 100011 |  -0.0517026 
 010111 | 101010 |   0.0504117 



179 

 

 
 STATE   7  ENERGY=      -149.0183209308  S=  1.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 111010 | 110100 |   0.5664673 
 111100 | 110010 |  -0.5664673 
 110110 | 111000 |  -0.5664673 
 101110 | 010110 |   0.0902954 
 011110 | 100110 |  -0.0902954 
 110110 | 001110 |  -0.0902954 
 
 STATE   8  ENERGY=      -149.0046104820  S=  0.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 111100 | 101010 |   0.4973532 
 111010 | 101100 |   0.4963582 
 111010 | 011010 |   0.4943406 
 111100 | 011100 |  -0.4939782 
 
 STATE   9  ENERGY=      -149.0046104753  S=  0.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 111010 | 101010 |   0.4970304 
 111100 | 101100 |  -0.4966890 
 111100 | 011010 |  -0.4946560 
 111010 | 011100 |  -0.4936548 
 
 STATE  10  ENERGY=      -148.9463646876  S=  0.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 111010 | 110100 |   0.6889153 
 111100 | 110010 |   0.6886060 
 101110 | 010110 |   0.1428209 
 011110 | 100110 |   0.1427614 
 
... 
 
 STATE  22  ENERGY=      -148.6986348926  S=  1.50  SZ=  0.50  SPACE SYM=A    
 
 ALPHA  | BETA   | COEFFICIENT 
--------|--------|------------ 
 011110 | 101100 |   0.5618101 
 111100 | 001110 |   0.5618101 
 101110 | 011100 |  -0.5618101 
 010111 | 111000 |   0.0974533 
 111010 | 010101 |   0.0953235 
 110101 | 011010 |  -0.0947354 
 111100 | 010011 |  -0.0840480 
 110011 | 011100 |   0.0834599 
 011110 | 110001 |   0.0813301 
... 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  
 
Because in the input for a fixed internuclear distance R we had NSTATE=22, the output 

will have 22 energy states (in red). Alpha and beta are the spin up and spin down electronic 

states, and depending on the configuration we have different states. For example, the ground 

state of O2
+ has the configuration (1σg)2(1σu)2(2σg)2(2σu)2(3σg)2(1πu)4(1πg)1(3σu)0, thus missing 

an electron from 1πg (See appendix G). In the input, the 1σg,1σu,2σg,2σu orbitals are assumed to 

be fixed, and electrons are allowed to move around only on the 3σg,1πu,1πg,3σu orbitals. There 
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are 6 orbitals with 2 spaces for electrons (spin up and spin down) on each.  For STATE 1 in the 

output under ALPHA and BETA, we have 111010 | 111000, meaning that we have a 

KK(3σg)2(1πu)4(1πg)1(3σu)0 configuration (KK=(1σg)2(1σu)2(2σg)2(2σu)2).  

S= 0.5 or S=1.5 is indicative of doublet or quartet states. One needs to repeat this 

calculation for different R. 

_  _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  
J.O. Output for O2

+ dipole coupling element calculations: 
... 
 ECHO OF THE FIRST FEW INPUT CARDS - 
 INPUT CARD> $CONTRL RUNTYP=TRANSITN SCFTYP=NONE CITYP=GUGA ISPHER=1 ICHARG=1 MULT=2 $END    
 INPUT CARD> $SYSTEM TIMLIM=90000 mwords=100 $END                                            
 INPUT CARD> $BASIS GBASIS=CCT $END                                                          
 INPUT CARD> $STATPT OPTTOL=0.00001 NSTEP=20 $END                                            
 INPUT CARD> !$DET NCORE=4 NACT=6 NELS=5 $END                                                
 INPUT CARD> !$GUESS GUESS=MOREAD norb=60 $END                                               
 INPUT CARD> $GUGDIA ITERMX=300 $END                                                         
 INPUT CARD> $TRANST OPERAT=DM NFZC=2 IROOTS(1)=16 NOCC=11 $END                              
 INPUT CARD> $DRT1 GROUP=c1 IEXCIT=2 NFZC=2 NDOC=4 NALP=3 NEXT=-1 NVAL=2 $END                
 INPUT CARD> $DATA                                                                           
 INPUT CARD>O2p MCSCF energy- cartesian coordinates                                          
 INPUT CARD>Dnh 4                                                                            
 INPUT CARD>                                                                                 
 INPUT CARD> O         8.0   0.0000000000  0.0000000000     0.5435216138                     
 INPUT CARD> $END                                                                            
 INPUT CARD> $VEC1                                                                           
 INPUT CARD> 1  1 6.90602729E-01 8.53547880E-04 3.05852604E-02 8.28470661E-04-0.00000000E+00 
... 
------------------------------------------------- 
 NON-ABELIAN CI WAVEFUNCTION STATE SYMMETRY DRIVER 
          WRITTEN BY DMITRI FEDOROV. 
     MEMORY USED IS   124381 WORDS 
 ------------------------------------------------- 
 
 ORBITAL  3(A1G ) HAS ROW FRACTIONS 100.%  
 ORBITAL  4(A2U ) HAS ROW FRACTIONS 100.%  
 ORBITAL  5(A1G ) HAS ROW FRACTIONS 100.%  
 ORBITAL  6(EU  ) HAS ROW FRACTIONS 100.%   0.%  
 ORBITAL  7(EU  ) HAS ROW FRACTIONS   0.% 100.%  
 ORBITAL  8(EG  ) HAS ROW FRACTIONS 100.%   0.%  
 ORBITAL  9(EG  ) HAS ROW FRACTIONS   0.% 100.%  
 ORBITAL 10(A2U ) HAS ROW FRACTIONS 100.%  
 ORBITAL 11(A2U ) HAS ROW FRACTIONS 100.%  
 
 STATE #    1  ENERGY =    -149.118516486 
 
      CSF      COEF    OCCUPANCY (IGNORING CORE) 
      ---      ----    --------- --------- ----- 
       35    0.987229  222211100 
      559    0.103933  221111210 
     1858   -0.070783  220211120 
 THE PROJECTION OF THIS CI STATE ONTO SPACE SYMMETRY EU   WEIGHS 1.0000E+00 
 
 
 STATE #    2  ENERGY =    -149.118516486 
 
      CSF      COEF    OCCUPANCY (IGNORING CORE) 
      ---      ----    --------- --------- ----- 
       13    0.987229  222121100 
      558   -0.098412  221112110 
      618    0.050133  221112110 
     1736    0.070783  220121120 
 THE PROJECTION OF THIS CI STATE ONTO SPACE SYMMETRY EU   WEIGHS 1.0000E+00 
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 STATE #    3  ENERGY =    -149.081770996 
 
      CSF      COEF    OCCUPANCY (IGNORING CORE) 
      ---      ----    --------- --------- ----- 
        5   -0.104469  221112200 
        8   -0.106718  212121200 
       12   -0.059513  122112200 
       23    0.809561  221221100 
       30   -0.106718  212212100 
       32    0.534715  122221100 
      523   -0.057262  220121210 
      638   -0.057262  220212110 
      693   -0.061688  211221110 
 THE PROJECTION OF THIS CI STATE ONTO SPACE SYMMETRY A2G  WEIGHS 9.6721E-01 
 
 THE PROJECTION OF THIS CI STATE ONTO SPACE SYMMETRY B2G  WEIGHS 3.2794E-02 
... 
          ---- LENGTH FORM ---- 
 
 THE NEXT PAIR ARE THE SAME STATE, SO THIS IS AN EXPECTATION VALUE, 
 RATHER THAN A TRANSITION MOMENT. 
 
 CI STATE NUMBER=  1  1 STATE MULTIPLICITY=  4  4 
 NUMBER OF CSF-S=      1932      1932 
 STATE ENERGIES         -149.1185164863     -149.1185164863 
 TRANSITION ENERGY=  0.0000E+00 [1/SEC] =        0.00 [1/CM] =        0.00 [EV] 
                          X [Z]       Y [Z]       Z [Z]       NORM 
 CENTER OF MASS    =    0.000000    0.000000    0.000000             BOHR 
 TRANSITION DIPOLE =   -0.000000   -0.000000    0.000000    0.000000 E*BOHR 
 TRANSITION DIPOLE =   -0.000000   -0.000000    0.000000    0.000000 DEBYE 
 STEP CPU TIME =     0.02 TOTAL CPU TIME =       44.3 (    0.7 MIN) 
 TOTAL WALL CLOCK TIME=       44.8 SECONDS, CPU UTILIZATION IS  98.90% 
 
 CI STATE NUMBER=  1  2 STATE MULTIPLICITY=  4  4 
 NUMBER OF CSF-S=      1932      1932 
 STATE ENERGIES         -149.1185164863     -149.1185164863 
 TRANSITION ENERGY=  1.8701E+02 [1/SEC] =        0.00 [1/CM] =        0.00 [EV] 
                          X [Z]       Y [Z]       Z [Z]       NORM 
 CENTER OF MASS    =    0.000000    0.000000    0.000000             BOHR 
 TRANSITION DIPOLE =   -0.000000   -0.000000   -0.000000    0.000000 E*BOHR 
 TRANSITION DIPOLE =   -0.000000   -0.000000   -0.000000    0.000000 DEBYE 
 OSCILLATOR STRENGTH =    0.000000 
 EINSTEIN COEFFICIENTS: A=  0.0000E+00 1/SEC; B=  0.0000E+00 SEC/G 
 STEP CPU TIME =     0.00 TOTAL CPU TIME =       44.3 (    0.7 MIN) 
 TOTAL WALL CLOCK TIME=       44.8 SECONDS, CPU UTILIZATION IS  98.90% 
 
 CI STATE NUMBER=  1  3 STATE MULTIPLICITY=  4  4 
 NUMBER OF CSF-S=      1932      1932 
 STATE ENERGIES         -149.1185164863     -149.0817709959 
 TRANSITION ENERGY=  2.4177E+14 [1/SEC] =     8064.52 [1/CM] =        1.00 [EV] 
                          X [C]       Y [C]       Z [Z]       NORM 
 CENTER OF MASS    =    0.000000    0.000000    0.000000             BOHR 
 TRANSITION DIPOLE =   -0.000091   -0.332025   -0.000000    0.332025 E*BOHR 
 TRANSITION DIPOLE =   -0.000231   -0.843930   -0.000000    0.843930 DEBYE 
 OSCILLATOR STRENGTH =    0.002701 
 EINSTEIN COEFFICIENTS: A=  1.1715E+05 1/SEC; B=  4.4738E+07 SEC/G 
 STEP CPU TIME =     0.00 TOTAL CPU TIME =       44.3 (    0.7 MIN) 
 TOTAL WALL CLOCK TIME=       44.8 SECONDS, CPU UTILIZATION IS  98.90% 
 

 ... 
 
_ _  _  _  _  _  _  _  _ _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  
 

Reading out the dipole coupling elements from the output is not straight forward. The 

input has IROOTS(1)=16, indicating that the output file will have 16 states. For identifying 



182 

 

which states are there, one needs to look at OCCUPANCY.  There are nine numbers given under 

the occupancy out of which the first 8 are: 2σg, 2σu, 3σg, two 1πu, two 1πg, and 3σu orbitals, and 

one extra virtual orbital. The 222211100 combination means we have 2 electrons in each of the 

2σg, 2σu, and 3σg orbitals, 2 electrons on 1πu
x, one on 1πu

y, one electron in each of the 1πg
x and 

1πg
y orbitals, and nothing in 3σu (see Appendix G). This combination corresponds to a a4Πu state 

(see Chapter  5). If one needs to find the dipole coupling matrix elements between a4Πu and 

some other state, for example f4Πg (222111200), a state with corresponding electron combination 

needs to be found.  

 
 

E.1 Compiling and running WIN-GAMESS 
In the WinGAMESS version of GAMESS, compiling of the input file is possible with 

“batmaker.exe”. 

Step1: Double-click on “batmaker.exe” ( ). The window shown in Fig.E1 will pop up.  

Step2: One can add an input file by clicking on the “Add file to list” button (Fig.E1, E2). After 

collecting the input file, the executable ***.bat file needs to be named and saved in the preferred 

output folder (Fig.E3). 

 

Step3: Double-click on the generated ***.bat file in the output folder (where it has been 

saved) and GAMESS will run. Generated output files will be located in the preferred output 

folder where the input and .bat files were saved (note that ***.dat files required for $VEC are 

generated in the “C\WinGAMESS\temp” folder).  

For further information, please consult the GAMESS website [*]  
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Figure 7 “Batmaker” compiler display. 
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Figure 8 Choosing input files already generated. 
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Figure 9 Choosing the name and place for outputs and .bat file . 

 

 

 
 
 
 
 
 
 
[*] Website for GAMESS: http://www.msg.ameslab.gov/gamess/documentation.html 

  

http://www.msg.ameslab.gov/gamess/documentation.html�
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Appendix F - Atomic units and useful formulas  
 

The SI unit system is based on four constants of nature: length - meter, time - second, 

mass - kilogram, and current - ampere. In atomic physics, it is more convenient to use atomic 

units, where,  

Atomic unit of action:    ħ  =  1 

Atomic unit of mass:    me  =  1 

Atomic unit of charge:    e   =  1 

Atomic unit of the Coulomb force constant: 1/4πε0  =  1 

 

The unit of length in atomic units is the Bohr radius of the hydrogen atom. The Bohr radius is the 

radius of the orbit of the electron in the ground state of hydrogen: 

 

𝑎0 = (4𝜋𝜀0)ℏ2

𝑚𝑒2
= 5.29177 × 10−11𝑚    (A.1) 

 

The unit of mass is taken to be the mass of the electron, the unit of charge is the electron's 

charge, and the unit of angular momentum is ħ. The unit of velocity is taken to be the velocity of 

the electron in the first Bohr orbit of hydrogen: 

 

𝑣0 = 𝑒2

(4𝜋𝜀0)ℏ
= 𝛼𝑐 ,      (A.2) 

 

where α is the fine structure constant and equal to 1/137 and c is the speed of the light, so in 

atomic units the speed of  light is 137. 

In atomic units, the energy level for the principal quantum number n is: 

𝐸𝑛 = − 𝑍2

2𝑛2
         (A.3) 

For hydrogen, the energy in atomic units is -0.5, such that the atomic unit of energy (which is 

called hartree) is 27.2 eV. The table below summarizes conversion from atomic units to SI units. 
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dimension formula a.u. SI units 
length a0 1 5.29177 ×10−11 m 

time a0/v0 1 2.41888×10−17 s 

mass me 1 9.10938×10−31 kg 

charge qe 1 1.60218×10−19 C 

velocity v0 1 2.18769×106 m/ s 

intensity 1/2 cε0(e/(4 πε0a0
2))2 1 3.50953×1016 W/cm2 

energy e2/(4 πε0a0) 1 27.2116 eV = 1 hartree 

momentum mev0 1 1.99285×10−24 kg m /s 

angular momentum ħ = a0mev0 1 1.05457×10−34 kg m2/ s 

frequency v0/(2πa0) 1 6.57969×1015 Hz 

angular  frequency v0/a0 1 4.13414×1016 Hz 

action ħ = e2/(4 πε0v0) 1 1.05457×10−34 J s 

electric field e/(4 πε0a2
0) 1 5.14221×1011 V/m 

magnetic field ħ/(ea0
2) 1 2.35052×105 T 

 

Table F.1 Conversion from atomic units to SI units 
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Appendix G - Molecular orbital diagrams for diatomic molecules 

For diatomic molecules, the electronic configurations look like those shown in Fig. G1 

for the example of the electronic configurations of N2 and O2 [Harris-78].  A molecular orbital 

scheme similar to N2 is used for Li2-N2 diatomic molecules and a scheme similar to O2 is used 

for F2. 

 

 
Figure 10 Molecular orbital diagram for N2 and O2 molecules. 
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