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II. Theory of Electron Capture 

Low energy ion-atom collisions can be described theoretically with very simple 

models, but there is a great range in the complexity and detail of more sophisticated 

models.  First, a simple physical picture will be used to set up a framework for later 

discussion.  With respect to electron capture for low energy collisions, the motion of the 

nucleus of the projectile is slow compared to the motion of the electrons bound on the 

target.  In such slow collisions, the electrons have time to adjust to the changing inter-

atomic fields that the projectile and target atom present, essentially forming quasi-

molecules.  Similar to Equation 1.1, we can more generally describe a typical collision 

system by 

Q++→+ +++ kk)-(qq BABA                      (Eq. 2.1) 

where k is the number of transferred electrons.   

Figure 2.1 illustrates typical molecular potential energy curves associated with 

single electron capture.  The incident channel, A+q + B, is essentially flat at large inter-

nuclear distances, dips a little at intermediate distances due to the polarization of the 

target atom, and then rises sharply at small inter-nuclear distances as the Coulomb 

potential starts to dominate.  Once an electron has been captured by a multiply charged 

projectile, both the projectile and the target are positively charged, so every exit channel, 

A+(q-k) + B+k, will be repulsive due to the Coulomb interaction.  

At an inter-nuclear distance, Rc (referred to as the crossing radius, since the 

potential curves cross at this point) there is an enhanced probability of charge  
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Figure 2.1      Illustration of the molecular potential energy curves V(R) versus log (R), associated 

with single electron capture (R is the inter-nuclear separation).   The short dashed lines represent 

single electron capture, and the longer dashed lines represent double electron capture followed by 

transfer ionization (T.I.).  

 

transfer.  For highly charged projectile ions, the number of curve crossings can become 

large, and many final states can be populated.  The Q-value is, essentially, the asymptotic 

difference in the energy of the incoming and outgoing channels, and can be expressed as   

Q = Vi (Rc) - Ve (Rc).            (Eq. 2.2) 

After electron capture has occurred, the Q-value is shared as kinetic energy between the 

target and the projectile ion. 

When more than one electron is captured by the projectile, it is often the case that 

more than one excited state of the ion is populated.  As mentioned in the last chapter, 
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these multiply excited states will primarily decay by emitting photons or by ejecting one 

of the electrons.  The case when two electrons are captured, and one of them is ejected is 

referred to as transfer ionization (T.I.).  In Figure 2.1 several potential energy curves 

leading to T.I are shown.  An ion that captures two electrons into excited states can also 

decay by photon emission, which results in “true” double capture to the projectile ion.   

 

A. Classical Over-Barrier Model 

The basic classical over-barrier model is a fairly simple approach for describing 

low energy collisions between multiply charged ions and light atoms, but is quite useful 

in qualitatively estimating which reaction channels will be most strongly populated.  

Therefore, a brief overview of this model will be discussed.  Consider a particle of charge 

Z colliding with a hydrogen atom.  The energy, E, of the electron (assuming its in the 

ground state of the H atom) can be expressed as 

      
R
Z

E −−=
2
1

,             (Eq. 2.3) 

where R is the inter-nuclear separation. (Unless otherwise sited, atomic units will be used 

throughout.) At a point y from the target nucleus, along the inter-nuclear axis the total 

potential energy is  

              
yR

Z
y

yV
−

−−=
1

)( .            (Eq. 2.4) 

The two potential wells have a saddle point, where V(y) has a maximum value, V(ym) 

along the inter-nuclear line.  The value of y at which the saddle is located along the inter-

nuclear axis can be found by solving for where the derivative of the potential is zero.  For 

this condition, 
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we can solve for y = ym, 

R
Z

ym 1
1

+
= .                 (Eq. 2.6) 

The height of the barrier at y = ym is 

2)1(
1

)( +−= Z
R

yV m .           (Eq. 2.7) 

When the effective energy of the electron in the target is equal to the energy that it 

would have in the nth shell of the projectile we have 

Rn
Z

R
Z 1

22
1

2

2

−−=−− .           (Eq. 2.8) 

The condition for electron capture to occur is that only when the effective energy is 

greater, or “over” the saddle point potential energy, or “barrier” can electron capture 

occur.  The active electron will be transferred at the inter-nuclear separation where it has 

enough energy to overcome the potential barrier given by the superposition of the 

Coulomb potentials of the projectile and target.   This is expressed as 

2)1(
1
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2
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Z

m .           (Eq. 2.9) 

Equation 2.8 and Equation 2.9 can be used to solve for np to give 

ZZ

Z
Zn p

2

)1(2(2

+

+
= .         (Eq. 2.10) 

Equation 2.10 will most likely not yield an integer number, so the greatest integer n that 

is less than np is the level on the projectile ion that the electron will be captured into.  

Also, from Equation 2.8, the crossing radius can be solved for 
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and calculated now that n is known.  The electron capture cross section can be expressed 

as  

2

2
1

CRπσ = ,          (Eq. 2.12) 

with the assumption that the probability for sharing the electron is equal after the barrier 

has been crossed.  Reaction channels that have crossing radii in the region around this 

inter-nuclear separation will be most strongly populated.  Since the potential well of the 

projectile ion is much deeper than that of the target, the energy levels of the projectile ion 

that match the energy level of the electron on the target will be excited states.  Therefore, 

electron-capture will preferentially be to excited states of the projectile.   

 

B. Landau-Zener Model 

Landau [2.1] and Zener [2.2] independently derived a formula for predicting the 

probability of a transition occurring at a molecular curve crossing.  By treating the multi-

channel charge transfer process as a series of couplings between two states, and making a 

couple of assumptions that simplify treatment of the problem, approximate solutions of 

the two state coupled channels problem can be derived, leading to analytical expressions 

for the transition probabilities.   

Since the charge transfer process can be broken down into a series of two state 

systems, and it’s easiest to first describe the model by considering a two state system. 

The first assumption made is that the coupling matrix element, H12, at the crossing radius 
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is much less than the relative kinetic energy of the ion-atom system.  This allows the 

system to be treated semi-classically, where the nuclear motion of the ion is treated 

classically, and the electron is treated quantum mechanically with the wave function of 

the electron given as 

∑
=

=Φ
N

k
kk trtctr

1

),()(),( φ ,          (Eq. 2.13)   

where ck are the wave function coefficients, and N is the number of states included (N=2 

for a two state system).  This allows r(t) to be calculated classically.  The second 

assumption is that the transition between the states occurs in a localized region around RC 

which is small enough that the potential energy curves, 1φ  and 2φ , can be 

approximated by tangents in this region.   

The wave functions and the coupling matrix elements are assumed to be constant 

in the crossing region, and equal to their values at RC in this region.  This is expressed as 

0|| 2112 >=>==
•••
φφH  

and           (Eq. 2.14) 

)()( 1212 CRHRH = . 

This allows the two-state coupled channels problem to be defined by 
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and           (Eq. 2.15) 
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where E1 and E2 correspond to the energy levels of the two states. 
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Figure 2.2      A plot of potential energy, V(R), versus the inter-nuclear separation, R, where two 

potential curves cross at the radius RC.  The coupling matrix element, H12, is half the adiabatic 

splitting at the crossing radius. 

 

The initial conditions are  

1|)(| 1 =−∞c    and   0|)(| 2 =−∞c .         (Eq. 2.16) 

From these conditions, the probability for an adiabatic, or non-crossing transition is given 

by 

2
111 |)(| ∞= cP .          (Eq. 2.17) 

This can be analytically solved to give 

πγ2
11

−= eP           (Eq. 2.18) 
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By defining ∆F as the difference in the slopes, the denominator of Equation 2.19 can be 

expressed more simply, as 

FvEE
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d
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d

r ∆=−=− )()( 2121         (Eq. 2.20) 

where vr is the radial velocity.  Now it is possible to write the Landau-Zener probability 

for an adiabatic transition in the form 
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,         (Eq. 2.21) 

and the probability of an diabatic transition is just, )1( p− .  There are two ways that the 

electron can transfer.  The electron can have a diabatic transition at the crossing radius for 

that particular transition, as the inter-nuclear separation decreases and the ion is 

approaching the atom, followed by an adiabatic transition as the inter-nuclear separation 

increases, when the ion passes the atom.  This is one scenario leading to electron capture, 

but the opposite order, that is, an adiabatic transition on the incoming path, and a diabatic 

transition on the exit path will also have the end result of electron capture.  Since there 

are two ways this can happen, we can express the total probability of the electron 

transferring at a given impact parameter as 

)1(2 ppP −=           (Eq. 2.22) 

The cross section for the two level case is then given by 

∫=
CR

bPdb
0

2πσ           (Eq. 2.23) 

where b is the impact parameter.   
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The basic two level charge exchange concept can be extended to a multi-level 

system, if the transition regions are well separated from one another.  In an N level 

system, with N-1 crossing radii, the probability of a transition to a particular state can be 

found by adding the probabilities for transitions along all the possible paths which lead to 

a transition to the final state. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.3     A diagram plotting V(R) versus R, to illustrate several potential curves with 

different crossing radii.   

 

If R2> R3> ….RN-1> RN> are the crossing radii, and pi ( i = 2, 3, …, N) is the two 

state transition probability for a crossing at Ri, the general expression for capture into the 

final state is given by Salop and Olson [2.3] as  

A+q +B 

(A+q-1) 
+B+ 

V(R) 

R R2 RN R3 R4 
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Pi = p2 p3 … pi (1- pi )[1+( pi+1 pi+2 … pN )2 

+( pi+1 pi+2 … pN-1)2(1- pN)2          (Eq. 2.24) 

+( pi+1 pi+2 … pN-2)2(1- pN-1)2 

+ … +( pi+1)2(1- pi+2)2 + (1- pi+1)2]. 

One of the important elements of the Landau-Zener model is the coupling matrix 

element, H12. A widely used universal formula for H12 was developed by Olson and 

Salop [2.4, 2.5], as  

( )qRCe
q

H /32.1
12

13.9 −=           (Eq. 2.25) 

where q is the effective projectile charge.  This is a quite simple expression, but has been 

quite successful at predicting approximate values of capture cross sections (typically 

within better than a factor of two).   

Another feature of this model is that it helps to explain why, when there are many 

possible final states that can be populated, only a few of these states actually contribute to 

the capture cross section.  The concept of a ‘reaction window’ is useful in understanding 

the state-selective nature of low energy charge capture.  Potential crossings at very large 

and very small crossing radii both yield electron capture probabilities that are low.  Only 

for intermediate crossing radii, where the probability is maximal, is the contribution to 

capture appreciable.  By examining how the Landau-Zener probability depends on the 

quantities that define it, it becomes clear why this is true.  The radial velocity, vr, is given 

as  

2)/(1 Cr Rbvv −=           (Eq. 2.26) 
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where b is the impact parameter, and v is the relative collision velocity.  Also, the 

difference in the slopes of the adiabatic potential curves (neglecting the polarization of 

the incident channel), ∆F, is 

2/)1( RqF −=∆           (Eq. 2.27) 

where q is the charge of the incident projectile ion.  Equation 2.26 and Equation 2.27 

can be used to express the probability of an adiabatic transition, given in Equation 2.21, 

as 
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Keeping in mind that the probability of capture is, P = 2p(1-p), we can examine how the 

probability behaves for small, intermediate, and large crossing radii for a two level 

system.  For very large crossing radii, since the coupling between the initial and final 

states is weak, the matrix coupling term, H12 goes to zero, and the adiabatic transition 

probability goes to a value of 1.  Therefore, the capture probability goes to zero.  For very 

small crossing radii, the coupling between the two states is very strong, and H12 becomes 

large, so the adiabatic transition probability goes to zero (becomes diabatic).  The capture 

probability goes to zero in this scenario as well.  At intermediate crossing radii, where p = 

0.5, the probability for capture is at a maximum.    

 

C. Absorbing sphere model 

The absorbing sphere model is an alternate version of the Landau-Zener model, 

and was developed by Olson and Salop [2.4].  Since part of the body of experimental data 

presented in this dissertation, and experimental data taken by others, have used this 
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theory for comparing experimental data to theoretical calculations, a brief overview of 

the absorbing sphere model is presented.  The main argument of this theory is, that for 

highly charged ions incident on a target atom, as the inter-nuclear separation becomes 

small, and the reaction window is reached, the density of states on the ion is so large that 

essentially all the reaction flux goes into capture.  For any impact parameters that are 

equal to the reaction window radius or smaller, electron capture will occur, and the 

system acts as an absorbing sphere.  If we take RC as the radius of the sphere, where the 

charge transfer probability inside this radius is assumed to be unity, the charge-transfer 

cross section is approximated as 

2
CRπσ = .          (Eq. 2.29) 

The semi-empirical expression used to determine the value of RC is  

( ) fvqqeR qR
C

C /)1(10864.2 0
4/648.22 −×= −− α ,        (Eq. 2.30) 

where the value, 6.13/I=α , and I is the ionization potential in units of electron volts.  

Also, v0 is the incident velocity of the projectile, and f is the Franck-Condon factor for 

specific vibrational transitions (for a molecular target).  In this model, the trajectory of 

the projectile is approximated as linear, and the attractive induced-dipole polarization is 

neglected.   
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D. Müller and Salzborn’s Scaling Law 

An empirical scaling law [2.6] was developed by Müller and Salzborn to calculate 

charge-transfer cross sections, using 107 data points for single-electron transfer, and 77 

data points for double-electron transfer, for collision energies ranging from 10-100 keV 

for various collision systems.  It was believed that the capture cross sections would have 

little energy dependence in the range of collision energies for which the scaling law was 

derived.  This is reflected in the equation for the cross section,  

βασ IAqMS = ,          (Eq. 2.31) 

where q is the charge of the ion, I is the ionization potential of the target (in eV). A, α, 

and β are fitting parameters with values of  (1.43 ± 0.76 ) × 10-12 cm2, 1.17 ± 0.09, and -

2.76 ± 0.19, respectively, for single capture.  For double capture, the fitting parameters A, 

α, and β are (1.08 ± 0.95 ) × 10-12 cm2, 0.71 ± 0.14, and -2.80 ± 0.32, respectively. 

 

E. The Langevin cross section 

The models discussed in this chapter up to this point have neglected the attractive 

polarization potential.  In very low energy collisions this polarization is expected to 

become a more influential effect in capture process since the electron cloud will have a 

relatively longer amount of time to adjust to the field presented by the ion as the ion 

comes into the vicinity of the target.  In this model, it is presumed that the projectile ion 

will follow a spiraling orbit toward the target atom, due to the polarization potential 

whenever the impact parameter is less than a critical value. The critical value for the 

impact parameter is   
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Here, vr is the relative velocity of the collision, µ is the reduced mass of the collision 

system, and αD is the dipole polarizability. 

The polarization potential is defined as 

42 2/ RqV Dp α−= ,          (Eq. 2.33) 

where, again, q is the charge of the projectile ion, and R is the inter-nuclear separation.  If 

there is a crossing between diabatic potential-energy curves at an inter-nuclear separation 

that is less than this critical impact parameter, the probability of charge transfer is high.  

An upper limit of the charge-transfer cross section, know as the Langevin cross section 

[2.7], is 

2
0bL πσ = .           (Eq. 2.34) 

One of the limitations of this model is that it is assumed that the charge-transfer 

cross-section is zero for impact parameters greater than the critical impact parameter.  If 

there is a crossing at an inter-nuclear separation greater than 0b  the Langevin cross 

section, Lσ  may not be an upper limit.  Also, if a molecule is used as a target, instead of 

an atom, dipole and quadrupole moments with even longer range potentials exist that 

depend on the orientation of the molecule.  This would generally pose an added 

complication to computing cross sections, since these moments would be more important 

in low energy collisions.  However, the only molecule used as a target for cross sections 

measured for this dissertation was H2, which has a zero dipole moment and a small 

quadrupole moment.  Also, since the dipole and quadrupole moments depend on q, and 

the polarization potential depends on q2, and most of the data measured was for fairly 
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large q values, it is expected that any dipole or quadrupole moments would not be 

important except at extremely low collision energies [2.8].  


