Strong-field ionization of aligned molecules

M. Abu-samha^{*, 1}, L. B. Madsen^{† 2},

The Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.

Synopsis A framework for studying strong-field ionization of aligned molecules is presented, and alignmentdependent ionization yields are computed for CO_2 and CS_2 . Our calculations are in unprecedented agreement with recent experiments, and explain the breakdown of the molecular tunnelling theory and strong-field approximation.

Fig. 1. Ionization yields as a function of the angle β for CO₂ and CS₂. The solid (dashed) line denotes our TDSE (MO-ADK) calculations.

Theoretical studies of strong-field ionization of molecules are impeded by the complexity of the molecular electronic structure. Up till now, full *ab initio* calculations of the alignmentdependent ionization are available only for H_2^+ and H_2 . For larger molecules, despite a tremendous amount of experiments, no ab initio calculations are available, and the most widely used approaches to explain strong-field processes are the molecular tunneling theory and strongfield approximation. Calculations of alignmentdependent ionization yields based on these theories fail to explain recent experiments: Tunneling theory and strong-field approximation predict the ionization yield to follow the electron density of the initial electronic state, in contrast with observations for the CO_2 molecule. [1]

In [2], we use *ab initio* theory within the single-active electron approximation to investigate the response of polyatomic molecules to intense femtosecond laser pulses. Our approach is grid based, which is the most widely used approach in strong-field physics, and takes input potentials from standard quantum chemistry codes. We only consider the dynamics of the outermost electron (the HOMO orbital): the remaining electrons are accounted for by an effective potential.

The computed ionization yields are shown in Fig. 1 for CO₂ and CS₂ as a function of the angle β . The orientation-dependencies of ionization are generally similar for the two molecules. For CO₂ and CS₂, the ionization yields are largest at 54±3° and 48±3°, respectively. These results are in unprecedented agreement with recent experiments [1], which predict the ionization yields to peak at about 46°. Our approach is clearly superior to the tunneling theory (cf. the figure) and the strong-field approximation (results not shown here) which predict the ionization yields for CO₂ to peak at about 25°.

References

- D. Pavičić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, Phys. Rev. Lett. 98, 243001 (2007).
- [2] M. Abu-samha and L. B. Madsen (Submitted for publication).

¹E-mail: mahmoud@phys.au.dk

²E-mail: bojer@phys.au.dk