Abstract Submitted for the DAMOP12 Meeting of The American Physical Society

Properties of Fr-like Th³⁺ from microwave spectroscopy of high-L Rydberg states of Th²⁺¹ JULIE KEELE, CHRIS SMITH, SHANNON WOODS, STEPHEN LUNDEEN, Colorado State University, CHARLES FEHRENBACH, Kansas State University — Spectroscopy of high-L n= 28 Rydberg levels of Th²⁺ was recently reported using the optical RESIS method [1]. Because the ground state of Fr-like Th³⁺ is a ²F_{5/2} level, each (n,L) Rydberg level of Th²⁺ is split into six eigenstates whose relative positions are determined by long-range e-Th³⁺ interactions. Measurements of those positions can be used to determine the Th³⁺ properties that control those interactions, such as polarizabilities and permanent moments. We report a much improved study of n=28 levels with $9 \le L \le 12$, obtained with the microwave/RESIS method. The higher precision measurements allow improved determinations of a wider range of Th³⁺ properties and a better test of theoretical calculations [2].

[1] Julie A. Keele, M.E. Hanni, Shannon L. Woods, S.R. Lundeen, and C.W. Fehrenbach, Phys. Rev. A <u>83</u>, 062501 (2011)

[2] U.I. Safronova, W.R. Johnson, and M.S. Safronova, Phys. Rev. A <u>74</u>, 042511 (2006)

¹Supported by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Science, U.S. Department of Energy

Stephen Lundeen Colorado State University

Date submitted: 18 Jan 2012

Electronic form version 1.4