ENHANCING THE OBSERVABILITY OF THE Efimov Effect IN ULTRACOLD ATOMIC GAS MIXTURES

José P. D'Incao and Brett D. Esry

Contract of Physics, Kansas State University

National Science Foundation

WHAT IS THIS EFIMOV EFFECT?

Search for Efimov States: Nuclear Physics, Atomic Physics

Limitations: needs to find a system with large *a* (at least 3 Efimov states) → He₃: only 1 Efimov state: open question ! → extremely weakly-bound states !

Ultracold Quantum Gases

Experimentally accessible !
 Clear signature of the Efimov Effect !
 (3-body collisions)

ULTRACOLD QUANTUM GASES

2-Body Collisions \rightarrow Suppressed ! 3-Body Collisions \rightarrow Lifetime, Stability ... Efimov Effect !

ULTRACOLD QUANTUM GASES

Three-Body Recombination: $K_3 \propto (k/\mu)\sigma$ $a + \bullet + \bullet \longrightarrow \bullet \bullet \bullet + \bullet + (\sim \frac{1}{a^2})$ Vibrational Relaxation: $V_{\text{rel}} \propto (k/\mu)\sigma$ $a + \bullet \longrightarrow \bullet \bullet \bullet + \bullet + (\sim \frac{1}{r_0^2})$

Rate Equations: $\dot{n}_X(t) = -[K_3(a)]n_X^3 - [V_{rel}(a)]n_Xn_{X_2}$ $\dot{n}_{X_2}(t) = -[V_{rel}(a)]n_Xn_{X_2}$

 n_X , n_{X_2} : experimental observables !

SIGNATURES OF EFIMOV EFFECT?!

BUILDING INTUITIVE PICTURE

a

 r_0


```
Rate Equations:

\dot{n}_X(t) = -[K_3(a)]n_X^3 - [V_{rel}(a)]n_Xn_{X_2}

\dot{n}_{X_2}(t) = -[V_{rel}(a)]n_Xn_{X_2}
```


LIMITATIONS

Minimum [Esry et. al, PRL (1999)]

SINGLE SPECIE ATOMIC GASES

- Large spacing ($e^{\pi/s_0} \approx 22.7$) between Efimov features
- $a_{\min} \approx r_0 [e^{\pi/s_0}]^N \to T_{\max} \lesssim 1/ma_{\min}^2$: large *a*, low *T*
- ${}^{133}\text{Cs:} a_{\min} \approx 4. \times 10^6 \text{ a.u.; } T_{\max} \approx 8. \times 10^{-5} \text{ nK}$ (X)

TWO SPECIES ATOMIC GASES

- Spacing (e^{π/s_0}) can be made smaller (\checkmark)
- Experimentally accessible a_{\min} and T_{\max} (\checkmark)
- Competition different 3-body processes: important (?)
- Favorable conditions: Boson-Fermion mixtures (✓)

TWO SPECIES ATOMIC GASES

 87 Rb- 40 K (JILA)

²³Na-⁶Li (MIT) Interspecies Feshbach resonances !

Two types of collisions are important: *XXY* and *XYY*

Recombination (no molecules !)

$$\dot{n}_{\rm X} \approx -[K_3^{\rm X+X+Y}(a)]n_{\rm Y}n_{\rm X}^2 - [K_3^{\rm X+Y+Y}(a)]n_{\rm Y}^2n_{\rm X} \dot{n}_{\rm Y} \approx -[K_3^{\rm X+X+Y}(a)]n_{\rm X}^2n_{\rm Y} - [K_3^{\rm X+Y+Y}(a)]n_{\rm X}n_{\rm Y}^2,$$

Relaxation

Competition !

$$\begin{split} \dot{n}_{\mathrm{X}} &\approx -[V_{\mathrm{rel}}^{\mathrm{XY}+\mathrm{X}}(a)]n_{\mathrm{XY}}n_{\mathrm{X}} \\ \dot{n}_{\mathrm{Y}} &\approx -[V_{\mathrm{rel}}^{\mathrm{XY}+\mathrm{Y}}(a)]n_{\mathrm{XY}}n_{\mathrm{Y}} \\ \dot{n}_{\mathrm{XY}} &\approx -[V_{\mathrm{rel}}^{\mathrm{XY}+\mathrm{X}}(a)]n_{\mathrm{X}}n_{\mathrm{XY}} - [V_{\mathrm{rel}}^{\mathrm{XY}+\mathrm{Y}}(a)]n_{\mathrm{Y}}n_{\mathrm{XY}} \end{split}$$

Efimov Physics $\rightarrow a$ dependence in K_3 , $V_{\rm rel}$.

[Gross scaling, valid for $E \lesssim 1/2\mu a^2$]

		$V_{ m rel}$			$K_3 (D_3)$		
	J^{π}	E	a > 0	a < 0	E	a > 0	a < 0
BBX	0+*	const	$*[P_{s_0}]a$	const	$const(k^4)$	$*[M_{s_0}]a^4$	$*[P_{s_0}] a ^4$
$\delta = \frac{m_X}{m_B}$	1-	k^2	a^{3-2p_0}	const	$k^2(k^6)$	a^6	$ a ^{6-2p_0}$
D	$2^+_{\delta<\delta_c}$ *	k^4	$*[P_{s_0}]a^5$	const	$k^{4}(k^{8})$	$*[M_{s_0}]a^8$	$*[P_{s_0}] a ^8$
	$2^+_{\delta>\delta_c}$	k^4	a^{5-2p_0}	const	$k^4(k^8)$	a^8	$ a ^{8-2p_0}$
FFX	0+	const	a^{1-2p_0}	const	$k^{4}(k^{8})$	a^8	$ a ^{8-2p_0}$
$\delta = \frac{m_X}{m_F}$	$1^{\delta<\delta_c}$ *	k^2	$*[P_{s_0}]a^3$	const	$k^2(k^6)$	$*[M_{s_0}]a^6$	$*[P_{s_0}] a ^6$
	$1^{\delta > \delta_c}$	k^2	a^{3-2p_0}	const	$k^2(k^6)$	a^6	$ a ^{6-2p_0}$
	2^{+}	k^4	a^{5-2p_0}	const	$k^4(k^8)$	a^8	$ a ^{8-2p_0}$

D'Incao and Esry, Submitted to PRL.

(*) Efimov Effect !

 s_0 depends on $\delta!$

TWO SPECIES ATOMIC GASES

TWO SPECIES ATOMIC GASES

We want mixtures with heavy Bosons $(m_B >> m_X)$!

EFIMOV EFFECT IN BOSON-BOSON MIXTURES

EFIMOV EFFECT IN BOSON-BOSON MIXTURES

EFIMOV EFFECT IN BOSON-BOSON MIXTURES

EFIMOV EFFECT IN BOSON-FERMION MIXTURES

EFIMOV EFFECT IN BOSON-FERMION MIXTURES

EFIMOV EFFECT IN BOSON-FERMION MIXTURES

BOSON-FERMION MIXTURES

	K_3^{B+B+F} and $V_{\rm rel}^{BF+B}$						
B-F	e^{π/s_0}	$ a_{\min} $ (a.u.)	$T_{\max}(nK)$				
133 Cs $-^{6}$ Li	4.877	$1.6 imes 10^4$	60.0	\checkmark			
⁸⁷ Rb- ⁶ Li	6.856	$5.6 imes 10^4$	5.00	\checkmark			
²³ Na- ⁶ Li	36.28	3.3×10^8	$\ll 0.1$	🗶 (MIT)			
⁷ Li- ⁶ Li	> 100	$\gg 10^8$	$\ll 0.1$	×			
133 Cs $-^{40}$ K	47.02	9.2×10^7	$\ll 0.1$	×			
⁸⁷ Rb- ⁴⁰ K	> 100	$\gg 10^8$	$\ll 0.1$	🗶 (JILA)			
23 Na $-^{40}$ K	> 100	$\gg 10^8$	$\ll 0.1$	×			
7 Li $-^{40}$ K	> 100	$\gg 10^8$	$\ll 0.1$	×			

BOSON-FERMION MIXTURES

SUMMARY

• Ultracold Quantum Gases: clear signature of **EFIMOV EFFECT**

• Boson-Fermion mixtures ($m_B \gg m_F$): favorable system

• Extremely long-lived *BF* molecules: EFIMOV PHYSICS