THREE-BODY COLLISIONS IN ULTRACOLD QUANTUM GASES

JOSÉ P. D'INCAO and BRETT D. ESRY

DEPARTMENT OF PHYSICS KANSAS STATE UNIVERSITY

What's the big deal with ultracold temperatures ?

Ultracold Quantum Gases

Experiments

EXTERNAL MAGNETIC FIELD: FESHBACH RESONANCE (CONTROL THE OF INTERATOMIC INTERACTIONS)

- $a > 0 \rightarrow \text{Effective Repulsive Interactions}$
- $a < 0 \rightarrow$ Effective Attractive Interactions

 $|a| \gg r_0$: Strongly Interacting Regime ! (When Some Interesting Physics Start to Happen ...)

Ultracold Quantum Gases

Bosonic Gases

- Collapse (Bosanova)
- Atom Lasers
- Atom Chip

- BCS (Superconductivity)
- Condensation of Cooper Pairs
- BEC-BCS crossover
- Long-Lived Molecules

Bose-Fermi Gases

- mBCS/BEC : High T_c
- Boson Mediated Cooper Paring
- Ultracold Polar Molecules

 \Rightarrow

$$a = \lim_{k \to 0} \frac{\tan(\delta_o + \delta_c)}{k}$$

$$\delta_i \approx \int \sqrt{2\mu r^2 [E - V(R)]} dr$$

 \Rightarrow

$$a = \lim_{k \to 0} \frac{\tan(\delta_o + \delta_c)}{k}$$

$$\delta_i \approx \int \sqrt{2\mu r^2 [E-V(R)]} dr$$

 \Rightarrow

$$a = \lim_{k \to 0} \frac{\tan(\delta_o + \delta_c)}{k}$$

$$\delta_i \approx \int \sqrt{2\mu r^2 [E-V(R)]} dr$$

 $a > 0 \rightarrow$ Repulsive Interactions (weakly bound molecules) $a < 0 \rightarrow$ Attractive Interaction (deeply bound molecules)

$|a| \gg r_0$: Strongly Interacting Regime ! (when interesting physics start to happen)

Elastic Collisions ($\sigma \propto a^2$) are "Good" : Evaporative Cooling ! Inelastic Collisions are "BAD" : Atomic and Molecular Losses

Rate Equation for the atomic density $% \left({{{\rm{ATE}}}} \right)$

$$\frac{d}{dt}n(t) = K_2 n^2(t) - K_3 n^3(t)$$

 $K_2 \rightarrow \text{Two-Body}$ (Negligiable or suppressed)

 $K_3 \rightarrow \text{Three-Body} (\text{Dominate }!)$

(Identical Bosons: $K_3 \propto a^4$!)

LOSSES PROCESS IN ULTRACOLD ATOMIC GASES

THREE-BODY RECOMBINATION (K_3) $X + X + X \rightarrow X_2^* + X + E_{vl}$

Collision Induced Dissociation (D_3) $X_2^* + X + E_{vl} \rightarrow X + X + X$

VIBRATIONAL RELAXATION (V_{rel}) $X_2^* + X \rightarrow X_2 + X + E$ LOSSES PROCESS IN ULTRACOLD ATOMIC GASES

For $|a| \gg r_0$ and $T \to 0$: 3-Body Physics becomes Universal (Because $\lambda \gg |a|$!)

$$L_3 = \langle \text{Non-Universal Features} \rangle \langle \text{Universal Features} \rangle$$

 \Rightarrow Non-Universal Features: Details of the interatomic interaction

 \Rightarrow Universal Features: *E* and *a* dependence

LOSSES PROCESS IN ULTRACOLD ATOMIC GASES

For $|a| \gg r_0$ and $T \to 0$: 3-Body Physics becomes Universal (Because $\lambda \gg |a|$!)

$$L_3 = \langle \text{Non-Universal Features} \rangle \langle \text{Universal Features} \rangle$$

 \Rightarrow Non-Universal Features: Details of the interatomic interaction

 \Rightarrow Universal Features: *E* and *a* dependence

Our Job: Extract the Universal aspects ! \Rightarrow Threshold Laws \Rightarrow Scaling Laws WHAT IS KNOWN ?

		$V_{ m rel}$			$K_3 \ (D_3)$		
	J^{π}	E	a > 0	a < 0	E	a > 0	a < 0
BBB	0^{+}	const	$oldsymbol{a}^{\scriptscriptstyle{ riangle}}$?	${ m const}~(k^4)$	$a^{4 \scriptscriptstyle riangle}$	$ a ^{4 riangle}$
	1-	k^2	?	?	$k^6 (k^{10})$?	?
	2^{+}	k^4	?	?	$k^4 (k^8)$	a^{8}	?
BBB'	0^{+}	const	?	?	const (k^4)	?	?
	1-	k^2	?	?	$k^2 (k^6)$?	?
FFF'	0^{+}	const	$a^{-3.332 \blacklozenge}$?	$k^4 \ (k^8)$?	?
	1-	k^2	?	?	$k^2 \; (k^6)$	$a^{6\Diamond}$?
	2^{+}	k^4	?	?	$k^4 (k^8)$?	?

^Δ Fedichev, Reynolds, and Shlyapnikov, PRL **77**, 2921 (1996); Esry, Greene, and Burke, PRL **83**, 1751 (1999).

▲ D'Incao, Suno, and Esry, PRL **93**, 123201 (2004).

 $^{\diamond}$ Petrov, PRA **67**, 010703(R) (2003).

Petrov, Salomon, and Shlyapnikov, PRL 93, 090404 (2004).

NO GENERAL RULE FOR THE *a* SCALING LAWS ! (NO SIMPLE PHYSCAL PICTURE FOR THE KNOW RESULTS)

HYPERSPHERICAL ADIABATIC REPRESENTATION

Hyperradius: $R^2 = r_1^2 + r_2^2$ (Overall size) **Hyperangles**: Internal motion (Think : Born-Oppenheimer !)

RADIAL SCHRÖDINGER EQUATION

$$\left[-\frac{1}{2\mu}\frac{d^2}{dR^2} + W_{\nu}(R)\right]F_{\nu}(R) + \sum_{\nu'\neq\nu}V_{\nu\nu'}(R)F_{\nu'}(R) = EF_{\nu}(R)$$

 $W_{\nu}(R) \Rightarrow$ Three-Body Effective potentials $V_{\nu\nu'}(R) \Rightarrow$ Nonadiabatic Couplings (inelastic transitions)

THREE-BODY EFFECTIVE POTENTIALS

THREE-BODY EFFECTIVE POTENTIALS

SO, WHAT ABOUT THE INELASTIC TRANSITIONS ?

THREE-BODY RECOMBINATION: BBB $(J^{\pi} = 0^+)$ $X + X + X \rightarrow X_2^* + X + E_{vl}$ $K_3 \propto a^4$!

INELASTIC TRANSITIONS

TUNNELING PROCESS TO WHERE THE COUPLING PEAKS !

TUNNELING PROBABILITY (WKB):

$$|T_{fi}|^2 = P_{x \to y}^{(\nu)} \approx \exp\left[-2\int_y^x \sqrt{2\mu \left(W_{\nu}(R) + \frac{1/4}{2\mu R^2} - E\right)} dR\right]$$

x: classical turning point y: coupling peak position

$$K_3 \propto \frac{|T_{fi}|^2}{k^4} \qquad \qquad V_{\rm rel} \propto \frac{|T_{fi}|^2}{k}$$

INELASTIC TRANSITIONS

TUNNELING PROCESS TO WHERE THE COUPLING PEAKS !

TUNNELING PROBABILITY (WKB):

$$|T_{fi}|^2 = P_{x \to y}^{(\nu)} \approx \exp\left[-2\int_y^x \sqrt{2\mu \left(W_{\nu}(R) + \frac{1/4}{2\mu R^2} - E\right)} dR\right]$$

x: classical turning point y: coupling peak position

$$K_3 \propto rac{|T_{fi}|^2}{k^4} \qquad \qquad V_{
m rel} \propto rac{|T_{fi}|^2}{k}$$

If $W_{\nu}(R)$ is different for each 3-body system ?

INELASTIC TRANSITIONS

TUNNELING PROCESS TO WHERE THE COUPLING PEAKS !

TUNNELING PROBABILITY (WKB):

$$|T_{fi}|^2 = P_{x \to y}^{(\nu)} \approx \exp\left[-2\int_y^x \sqrt{2\mu \left(W_{\nu}(R) + \frac{1/4}{2\mu R^2} - E\right)} dR\right]$$

x : classical turning point y : coupling peak position

$$K_3 \propto rac{|T_{fi}|^2}{k^4} \qquad \qquad V_{
m rel} \propto rac{|T_{fi}|^2}{k}$$

If $W_{\nu}(R)$ is different for each 3-body system ? If $V_{\nu\nu'}(R)$ peaks in any place ?

INELASTIC TRANSITIONS

TUNNELING PROCESS TO WHERE THE COUPLING PEAKS !

TUNNELING PROBABILITY (WKB):

$$|T_{fi}|^2 = P_{x \to y}^{(\nu)} \approx \exp\left[-2\int_y^x \sqrt{2\mu \left(W_{\nu}(R) + \frac{1/4}{2\mu R^2} - E\right)} dR\right]$$

x : classical turning point y : coupling peak position

$$K_3 \propto rac{|T_{fi}|^2}{k^4} \qquad \qquad V_{
m rel} \propto rac{|T_{fi}|^2}{k}$$

If $W_{\nu}(R)$ is different for each 3-body system ? If $V_{\nu\nu'}(R)$ peaks in any place ?

INELASTIC TRANSITIONS

TUNNELING PROCESS TO WHERE THE COUPLING PEAKS !

TUNNELING PROBABILITY (WKB):

$$|T_{fi}|^2 = P_{x \to y}^{(\nu)} \approx \exp\left[-2\int_y^x \sqrt{2\mu \left(W_{\nu}(R) + \frac{1/4}{2\mu R^2} - E\right)} dR\right]$$

x : classical turning point y : coupling peak position

$$K_3 \propto rac{|T_{fi}|^2}{k^4} \qquad \qquad V_{
m rel} \propto rac{|T_{fi}|^2}{k}$$

If $W_{\nu}(R)$ is different for each 3-body system ? If $V_{\nu\nu'}(R)$ peaks in any place ? ... But ... That's not the case !

3-BODY SYSTEMS (s-WAVE RES. INT. TWO CATEGORIES !

For $ a \gg r_0$	$R < r_0$ (Not Universal)	$r_0 < R < a \ ({ m Universal})$	R > a (Universal)
Category I \rightarrow	DETAILS	$-rac{s_0^2+1/4}{2\mu R^2}~{ m or}~rac{s_ u^2-1/4}{2\mu R^2}$	$E_{vl'} + \frac{l(l+1)}{2\mu R^2}$ or $\frac{\lambda(\lambda+4) + 15/4}{2\mu R^2}$
Category II \rightarrow	DETAILS	$\frac{p_0^2 + 1/4}{2\mu R^2}$ OR $\frac{p_\nu^2 - 1/4}{2\mu R^2}$	$E_{vl'} + \frac{l(l+1)}{2\mu R^2}$ OR $\frac{\lambda(\lambda+4) + 15/4}{2\mu R^2}$

- l, l' Angular Momentum \rightarrow Symmetry Dep.
- λ Kinetic Energy \rightarrow Symmetry Dep.

 $s_0, s_{\nu}, p_0 \text{ and } p_{\nu}$ - Efimov Physics \rightarrow Symmetry Dep. !

 \rightarrow Number of Resonant Interactions !

 \rightarrow Mass Ratios !

 $W_{v}(R)$

 r_0

a

R (a.u.)

 $W_{\rm V}\left(R\right)$

 $W_{\mathbf{v}}\left(R\right)$

R (a.u.)

 $W_{\rm V}(R)$

CATEGORY I

R (a.u.)

CATEGORY II

R (a.u.)

R (a.u.)

THREE-BODY RECOMBINATION K_3

$$K_3 \propto k^{2\lambda} \left[A_\eta \sin^2 \left[s_0 \ln(a/r_0) + \Phi \right] a^{2\lambda+4} + B_\eta \left(\frac{r_0}{a} \right)^{2s_\nu} a^{2\lambda+4} \right] + \dots$$

THREE-BODY RECOMBINATION K_3

$$K_{3} \propto k^{2\lambda} \left[A_{\eta} \sin^{2} \left[s_{0} \ln(a/r_{0}) + \Phi \right] a^{2\lambda+4} + B_{\eta} \left(\frac{r_{0}}{a} \right)^{2s_{\nu}} a^{2\lambda+4} \right] + \left[C_{\eta} \left(\frac{r_{0}}{a} \right)^{2s_{\nu}} a^{2\lambda+4} + D_{\eta} a^{2\lambda+4} \right]$$

THREE-BODY RECOMBINATION K_3

$$K_3 \propto k^{2\lambda} \left[A_{\eta} + B_{\eta} \left(\frac{r_0}{a} \right)^{2p_0} + C_{\eta} \left(\frac{r_0}{a} \right)^{2p_{\nu}} + D_{\eta} \left(\frac{r_0}{a} \right)^{2p_0 + 2p_{\nu}} \right] a^{2\lambda + 4}$$

CATEGORY I

•
$$(a > 0)$$
 $K_3 \propto k^{2\lambda} \left[A_\eta \sin^2 \left[s_0 \ln(a/r_0) + \Phi \right] + B_\eta \left(\frac{r_0}{a} \right)^{2s_\nu} + C_\eta \right] a^{2\lambda + 4}$
• $(a < 0)$ $K_3 \propto k^{2\lambda} \left[\frac{\sinh(2\eta)}{\sin^2 \left[s_0 \ln(|a|/r_0) + \Phi \right] + \sinh^2(\eta)} \right] a^{2\lambda + 4}$

•
$$(a > 0)$$
 $V_{\text{rel}} \propto k^{2l} \left[\frac{\sinh(2\eta)}{\sin^2 \left[s_0 \ln(|a|/r_0) + \Phi \right] + \sinh^2(\eta)} \right] a^{2l+1}$
• $(a < 0)$ $V_{\text{rel}} \propto A_\eta k^{2l} r_0^{2l+1}$

INCLUDES: BBB $(J^{\pi} = 0^+)$, BBB' $(J^{\pi} = 0^+)$, BBb $(J^{\pi} = 0^+)$, FFf $(J^{\pi} = 1^-, m_f/m_F < 0.073)$,

CATEGORY II

•
$$(a > 0)$$
 $K_3 \propto k^{2\lambda} \left[A_\eta + B_\eta \left(\frac{r_0}{a} \right)^{2p_0} + C_\eta \left(\frac{r_0}{a} \right)^{2p_\nu} + D_\eta \left(\frac{r_0}{a} \right)^{2p_0 + 2p_\nu} \right] a^{2\lambda + 4}$
• $(a < 0)$ $K_3 \propto k^{2\lambda} \left(\frac{r_0}{|a|} \right)^{2p_0} |a|^{2\lambda + 4}$

•
$$(a > 0)$$
 $V_{rel} \propto A_{\eta} k^{2l} \left(\frac{r_0}{a}\right)^{2p_0} a^{2l+1}$
• $(a < 0)$ $V_{rel} \propto A_{\eta} k^{2l} r_0^{2l+1}$

INCLUDES: BBB $(J^{\pi}=2^+)$, BBB' $(J^{\pi}=2^+)$, FFF' $(J^{\pi}=0^+)$, FFf $(J^{\pi}=0^+)$, FFf $(J^{\pi}=1^-, m_f/m_F > 0.073)$, ...

		$V_{ m rel}$			$K_3 \ (D_3)$		
_	J^{π}	E	a > 0	a < 0	E	a > 0	a < 0
BBB	0^{+}	CONST	a	CONST	const (k^4)	a^4	$ a ^4$
	1-	k^2	$a^{-2.728}$	CONST	$k^6 (k^{10})$	a^{10}	$ a ^{4.272}$
	2^{+}	k^4	$a^{-0.647}$	CONST	$k^4 \ (k^8)$	a^8	$ a ^{2.353}$
BBB'	0^{+}	CONST	a	CONST	const (k^4)	a^4	$ a ^4$
	1-	k^2	$a^{-1.558}$	CONST	$k^2 (k^6)$	a^6	$ a ^{1.443}$
FFF'	0^{+}	CONST	$a^{-3.332}$	CONST	$k^4 \ (k^8)$	a^8	$ a ^{3.668}$
	1-	k^2	$a^{-0.546}$	CONST	$k^2 (k^6)$	a^6	$ a ^{2.455}$
	2^{+}	k^4	$a^{-1.210}$	CONST	$k^4 \ (k^8)$	a^8	$ a ^{1.790}$

- Our method describe ALL relevent tree-body systems in terms of simple physical concepts (Tuneling) and fundamental physics (EFIMOV)
- Both Threshold and *a*-Scaling Laws depends only in the initial state

• Pervasive influence of the Efimov physics

 \bullet Control of the collisional aspects by choosing the masses