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Very Useful Picture
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Motivation and Goals

Motivation:

• To re-examine the many approximations made in the past

• Mistakes have been made (and published)

Goals:

• To give an explicit accounting of the coupling

• To show the limits of the usual two-channel approximation

• To show how to check whether a calculation is correct



Theory

D. Telnov and S.I. Chu, Phys. Rep. 390, 1 (2004)

Want to solve

i
∂

∂t
Ψ(R, r, t) = HΨ(R, r, t)

where

H = −
1

2µAB

∂2

∂R2
+Hel +W (t)

W (t) = − E · d cosωt

and

d =
ZBmA−ZAmB

mAB

R −
mAB+ZAB

mAB + 1
r



Theory

Floquet Theorem says

Ψ(R, r, t) = e−iεtψ(R, r, t)

with

ψ(R, r, t) = ψ(R, r, t+ T )

giving
(

H − i
∂

∂t

)

ψ = εψ.

Can solve adiabatically (Born-Oppenheimer)

HadΦν(R; Ω) = Uν(R)Φν(R; Ω)

where Ω = (R̂, r, t) and

Had = Hel +W (t) − i
∂

∂t



Theory

Adiabatic states are complete with the definition

〈Φλ|Φν〉 =

∫

dΩ Φ∗
λΦν

=
1

T

∫ T

0
dt

∫

dR̂

∫

d3r Φ∗
λΦν .

ψ periodic implies Φ periodic, so can use Fourier series

Φν(R; Ω) =
∞
∑

n=−∞

φνn(R; R̂, r)e−inωt

giving
(

Hel−n
′ω
)

φνn′ +
∑

n

〈n′|W |n〉φνn = Uνφνn′

〈n′|H1|n〉 =
1

T

∫ T

0
ei(n

′−n)ωtW (t)dt = −
1

2
E · d(δn′,n+1 + δn′,n−1)



Theory

We need to solve

(Hel−nω)φνn−
1

2
E · d (φνn−1+φνn+1) = Uνφνn



Theory

Neglecting nuclear rotation, can expand φ on field-free electronic states χ

φνn(R, θ; r) =
∑

αΛ

aνn,αΛ(R, θ)χαΛ(R; r).

Writing

E · d = d‖E cos θ + d⊥E sin θ

gives

(

U0
αΛ−nω

)

aνn,αΛ −
1

2

∑

α′Λ′

〈αΛ|E · d|α′Λ′〉
(

aνn−1,α′Λ′+aνn+1,α′Λ′

)

= Uν(R, θ)aνn,αΛ.



Theory

The required dipole matrix elements are:

∆Λ = 0 : 〈α′Λ′|d‖|αΛ〉 =
ZBmA−ZAmB

mAB

R δα′αδΛ′Λ

−
mAB+ZAB

mAB + 1
〈α′Λ′|z|αΛ〉δΛ′Λ

∆Λ = ±1 : 〈α′Λ′|d⊥|αΛ〉 = −
1

2

mAB+ZAB

mAB + 1
〈α′Λ′|ρ|αΛ〉(δΛ′Λ+1+δΛ′Λ−1)

If the molecule is homonuclear, also have: g→u and u→g



H+
2 Born-Oppenheimer Potentials

(~ω=0.058 a.u.=1.5 eV)
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H+
2 Dipole Matrix Elements
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Diabatic Floquet Potentials

(

U0
αΛ−nω

)

aνn,αΛ −
1

2

∑

α′Λ′

〈αΛ|E · d|α′Λ′〉
(

aνn−1,α′Λ′+aνn+1,α′Λ′

)

= Uν(R, θ)aνn,αΛ.

ω=0.058 a.u. (λ=790 nm)
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Adiabatic Floquet Potentials

Diabatic Adiabatic
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Convergence with Floquet Blocks
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Non-Convergence with Floquet Blocks

The dynamics of small molecules 645

Figure 11. Photon-dressed states of H+
2 . The diabatic curves are valid for small laser E-fields (a).

The adiabatic curves display anticrossings as a result of the dipole couplings induced by the laser

E-field (b). Here, the one-photon crossing is highly avoided, whilst the gap of the three-photon

crossing is so small that the crossing is still diabatic.

the Hamiltonian matrix that has to be diagonalized. Since the dipole matrix element diverges

in the length gauge, the adiabatic curves tend to repel each other at large R in an unphysical

manner.

Since the Born–Oppenheimer approximation is used in order to arrive at the adiabatic

curves, couplings due to the motion of the nuclei have been neglected. For high nuclear

momentum, the diabatic curves are appropriate, whereas for very slowly moving nuclei, the

adiabatic curves with the avoided crossings should be considered.

4.5. Bond-softening and vibrational trapping

With the aid of the adiabatic curves it is possible to interpret the results of the calculation that

integrated the time-dependent Schrödinger equation. At the beginning of the pulse, the laser

field is zero and the diabatic curves are valid. On the leading edge of the laser pulse, first the

one-photon crossing opens up. This, however, has no effect, since the initial state consists

of the v = 4 vibrational level only, which is far below the gap of the avoided crossing. In

fact, the nuclear wavepacket cannot even tunnel through the barrier, since the v = 4 level is

below the one-photon dissociation continuum. Then, around an intensity of 1014 W cm−2 the

three-photon crossing is avoided. The three-photon crossing is below the v = 4 level and thus

the nuclear wavepacket is unbound on the adiabatic curve. If one thinks of the initial state

being situated on the |g, N〉 potential curve, a dissociating wavepacket is thus launched on

the |u, N − 3〉 curve. In other words, the H+
2 molecule begins to dissociate by the absorption

of three photons. However, this is not the final situation, since at somewhat larger R, there is

a very strongly avoided one-photon crossing between the |u, N − 3〉 and |g, N − 2〉 states.

By passing this one, the molecule again emits one of the photons, such that in the end, the

dissociating wavepacket corresponds to the photo-dissociation by two photons. In figure 6 it

is the first outward travelling wavepacket at t ∼ 100 fs. In the kinetic energy spectrum, it is

responsible for the peak at 1 eV. The process is often referred to as bond-softening [56].

Posthumus, Rep. Prog. Phys. 67, 623 (2004).



Angle Dependence
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Onset of Coupling with n=2

Gerade Ungerade
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Onset of Coupling with n=2

I=5×1013 W/cm2, θ=0

Two-Channels (n=1) Six-Channels (n=2)
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Including Nuclear Rotation
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Simplest Model

Near 1-photon crossing can simply diagonalize

U(R) =





U1sσg
(R) 1

2RE cos θ

1
2RE cos θ U2pσu

(R) − ω





when intensities are below about 1013 W/cm2



Summary

• Be careful looking at Floquet curves in literature

• Two-channel model valid mainly for I < 5 × 1013 W/cm2 or so

• Representation most useful when number of curves is small


