Re-examination of the Floquet Treatment of H_{2}^{+}

——B.D. Esry

Very Useful Picture

Motivation and Goals

Motivation:

- To re-examine the many approximations made in the past
- Mistakes have been made (and published)

Goals:

- To give an explicit accounting of the coupling
- To show the limits of the usual two-channel approximation
- To show how to check whether a calculation is correct

Theory

D. Telnov and S.I. Chu, Phys. Rep. 390, 1 (2004)

Want to solve

$$
i \frac{\partial}{\partial t} \Psi(\mathbf{R}, \mathbf{r}, t)=H \Psi(\mathbf{R}, \mathbf{r}, t)
$$

where

$$
\begin{aligned}
H & =-\frac{1}{2 \mu_{A B}} \frac{\partial^{2}}{\partial R^{2}}+H_{\mathrm{el}}+W(t) \\
W(t) & =-\mathbf{E} \cdot \mathbf{d} \cos \omega t
\end{aligned}
$$

and

$$
\mathbf{d}=\frac{Z_{B} m_{A}-Z_{A} m_{B}}{m_{A B}} \mathbf{R}-\frac{m_{A B}+Z_{A B}}{m_{A B}+1} \mathbf{r}
$$

Theory

Floquet Theorem says

$$
\Psi(\mathbf{R}, \mathbf{r}, t)=e^{-i \varepsilon t} \psi(\mathbf{R}, \mathbf{r}, t)
$$

with

$$
\psi(\mathbf{R}, \mathbf{r}, t)=\psi(\mathbf{R}, \mathbf{r}, t+T)
$$

giving

$$
\left(H-i \frac{\partial}{\partial t}\right) \psi=\varepsilon \psi
$$

Can solve adiabatically (Born-Oppenheimer)

$$
H_{\mathrm{ad}} \Phi_{\nu}(R ; \Omega)=U_{\nu}(R) \Phi_{\nu}(R ; \Omega)
$$

where $\Omega=(\hat{R}, \mathbf{r}, t)$ and

$$
H_{\mathrm{ad}}=H_{\mathrm{el}}+W(t)-i \frac{\partial}{\partial t}
$$

Theory

Adiabatic states are complete with the definition

$$
\begin{aligned}
\left\langle\Phi_{\lambda} \mid \Phi_{\nu}\right\rangle & =\int d \Omega \Phi_{\lambda}^{*} \Phi_{\nu} \\
& =\frac{1}{T} \int_{0}^{T} d t \int d \hat{R} \int d^{3} r \Phi_{\lambda}^{*} \Phi_{\nu}
\end{aligned}
$$

ψ periodic implies Φ periodic, so can use Fourier series

$$
\Phi_{\nu}(R ; \Omega)=\sum_{n=-\infty}^{\infty} \phi_{\nu n}(R ; \hat{R}, \mathbf{r}) e^{-i n \omega t}
$$

giving

$$
\begin{gathered}
\left(H_{\mathrm{el}}-n^{\prime} \omega\right) \phi_{\nu n^{\prime}}+\sum_{n}\left\langle n^{\prime}\right| W|n\rangle \phi_{\nu n}=U_{\nu} \phi_{\nu n^{\prime}} \\
\left\langle n^{\prime}\right| H_{1}|n\rangle=\frac{1}{T} \int_{0}^{T} e^{i\left(n^{\prime}-n\right) \omega t} W(t) d t=-\frac{1}{2} \mathbf{E} \cdot \mathbf{d}\left(\delta_{n^{\prime}, n+1}+\delta_{n^{\prime}, n-1}\right)
\end{gathered}
$$

Theory

We need to solve

$$
\left(H_{\mathrm{el}}-n \omega\right) \phi_{\nu n}-\frac{1}{2} \mathbf{E} \cdot \mathbf{d}\left(\phi_{\nu n-1}+\phi_{\nu n+1}\right)=U_{\nu} \phi_{\nu n}
$$

Theory

Neglecting nuclear rotation, can expand ϕ on field-free electronic states χ

$$
\phi_{\nu n}(R, \theta ; \mathbf{r})=\sum_{\alpha \Lambda} a_{\nu n, \alpha \Lambda}(R, \theta) \chi_{\alpha \Lambda}(R ; \mathbf{r}) .
$$

Writing

$$
\mathbf{E} \cdot \mathbf{d}=d_{\|} E \cos \theta+d_{\perp} E \sin \theta
$$

gives

$$
\begin{aligned}
\left(U_{\alpha \Lambda}^{0}-n \omega\right) a_{\nu n, \alpha \Lambda}-\frac{1}{2} \sum_{\alpha^{\prime} \Lambda^{\prime}}\langle\alpha \Lambda| \mathbf{E} \cdot \mathbf{d}\left|\alpha^{\prime} \Lambda^{\prime}\right\rangle & \left(a_{\nu n-1, \alpha^{\prime} \Lambda^{\prime}}+a_{\nu n+1, \alpha^{\prime} \Lambda^{\prime}}\right) \\
& =U_{\nu}(R, \theta) a_{\nu n, \alpha \Lambda}
\end{aligned}
$$

Theory

The required dipole matrix elements are:

$$
\begin{aligned}
\Delta \Lambda=0: \quad\left\langle\alpha^{\prime} \Lambda^{\prime}\right| d_{\|}|\alpha \Lambda\rangle= & \frac{Z_{B} m_{A}-Z_{A} m_{B}}{m_{A B}} R \delta_{\alpha^{\prime} \alpha} \delta_{\Lambda^{\prime} \Lambda} \\
& -\frac{m_{A B}+Z_{A B}}{m_{A B}+1}\left\langle\alpha^{\prime} \Lambda^{\prime}\right| z|\alpha \Lambda\rangle \delta_{\Lambda^{\prime} \Lambda}
\end{aligned}
$$

$\Delta \Lambda= \pm 1: \quad\left\langle\alpha^{\prime} \Lambda^{\prime}\right| d_{\perp}|\alpha \Lambda\rangle=-\frac{1}{2} \frac{m_{A B}+Z_{A B}}{m_{A B}+1}\left\langle\alpha^{\prime} \Lambda^{\prime}\right| \rho|\alpha \Lambda\rangle\left(\delta_{\Lambda^{\prime} \Lambda+1}+\delta_{\Lambda^{\prime} \Lambda-1}\right)$

If the molecule is homonuclear, also have: $g \rightarrow u$ and $u \rightarrow g$

H_{2}^{+}Born-Oppenheimer Potentials

\mathbf{H}_{2}^{+}Dipole Matrix Elements

Diabatic Floquet Potentials

$$
\begin{aligned}
\left(U_{\alpha \Lambda}^{0}-n \omega\right) a_{\nu n, \alpha \Lambda}-\frac{1}{2} \sum_{\alpha^{\prime} \Lambda^{\prime}}\langle\alpha \Lambda| \mathbf{E} \cdot \mathbf{d}\left|\alpha^{\prime} \Lambda^{\prime}\right\rangle & \left(a_{\nu n-1, \alpha^{\prime} \Lambda^{\prime}}+a_{\nu n+1, \alpha^{\prime} \Lambda^{\prime}}\right) \\
& =U_{\nu}(R, \theta) a_{\nu n, \alpha \Lambda}
\end{aligned}
$$

Adiabatic Floquet Potentials

Convergence with Floquet Blocks

Non-Convergence with Floquet Blocks

Posthumus, Rep. Prog. Phys. 67, 623 (2004).

Angle Dependence

$$
I=10^{13} \mathrm{~W} / \mathrm{cm}^{2}
$$

Onset of Coupling with $n=2$

Gerade Ungerade

Onset of Coupling with $n=2$

$$
I=5 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}, \theta=0
$$

Takes $10^{15} \mathrm{~W} / \mathrm{cm}^{2}$ for $\theta=\pi / 2$

Including Nuclear Rotation

Simplest Model

Near 1-photon crossing can simply diagonalize

$$
\mathbf{U}(R)=\left(\begin{array}{cc}
U_{1 s \sigma_{g}}(R) & \frac{1}{2} R E \cos \theta \\
\frac{1}{2} R E \cos \theta & U_{2 p \sigma_{u}}(R)-\omega
\end{array}\right)
$$

when intensities are below about $10^{13} \mathrm{~W} / \mathrm{cm}^{2}$

Summary

- Be careful looking at Floquet curves in literature
- Two-channel model valid mainly for $I<5 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$ or so
- Representation most useful when number of curves is small

