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Derivation of Horizontal Position X 
 
This development will be given in terms of the horizontal position signals.  Vertical 
position may be calculated in an analogous manner.  The horizontal signals coming from 
a DLD detector can be written, in units of ns, as 
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Here, T is the time of arrival of the detected particle on the MCP, dlt and drt are offsets, 
including the TOF from the MCP to the delayline anode (same for L and R) and any 
cable delay to the CFD (can be different for L and R) minus the cable and CFD delay for 
the T signal,  xl  is the half-length (in mm) of the horizontal winding on the delay line 
(i.e. the distance from the center to one end of the anode), x  is the position in mm from 
the center of the horizontal anode, and xv  is the velocity in mm/ns of the signal on the 
anode.  We can solve for the position x  in mm as follows: 
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where 0x is an offset to get the zero position correct. 
 
With the LeCroy TDC, we actually measure the position signals in channels, where each 
channel corresponds to 0.5 ns.  Therefore, the full position calculation would be: 
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where chL and chR  are now in units of TDC channels.   
 
Published Values of Transverse Velocity  
 
The only way to definitively determine the constants xv  and 0x  is through the use of a 
detector mask with a calibrated grid.  However, Roentdek publishes approximate values 
(they say to within 5%) for each of their detectors that we can use as a check.  In the most 
recent version of their MCP Delay Line manual (v 6.2.90.7), they list what they call 
“single pitch propagation times” for each detector as follows: 
 
 



DLD40 0.73 ns/mm 
DLD80 0.95 ns/mm 
DLD120 1.25 ns/mm 
 
This number is the inverse of the propagation velocity xv .  Thus, the values for xv  would 
be: 
 
 
DLD40 xv = 1.37 mm/ns 
DLD80 xv = 1.05 mm/ns 
DLD120 xv = 0.80 mm/ns 
 
Note that, assuming that the conversion from channels to ns has already been made, the 
position calculation can be made with an explicit factor of 2, as in, for the DLD80, 
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or the conversion constant can be redefined to incorporate the factor of 2, as in 
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The second form is equivalent to multiplying the Roentdek single pitch propagation time 
by 2, giving a value of 1.9 ns/mm for the DLD80, which corresponds to the number listed 
on page 8 of their manual as “the correspondence between position and time in the 2d 
image”. 
 
Origin of Transverse Velocity and Consistency Checks 
 
The values for the transverse velocities can be understood by looking at how a delayline 
is constructed.  We’ll use a DLD80 as an example.  The distance between the outer edges 
of the ceramic cylinders that hold the windings are 118 mm and 120 mm.  This works out 
to straight sections of 110 mm of wire in air on each side and 15 mm curved sections in 
contact with each cylinder.  If we consider a single loop of wire, this is 220 mm in air and 
30 mm in contact with the cylinder.  The windings are in pairs, with the two wires of the 
pair .5 mm apart and a single wire wrapped 1 mm apart.  Therefore, for a single loop, the 
pitch is 250 mm to 1 mm.  A signal has to travel 250 mm around the loop to travel 1 mm 
in the transverse direction.  On the portion of the loop in air, the signal will travel at the 
speed of light.  However, according to Roentdek, the signal sees the ceramic on the turns 
and has an effective relative permittivity there of 6≅rε , so that the propagation velocity 

is reduced by 45.26 = .  Therefore, the time it takes the signal to go around one loop is: 
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This is .978 ns per 1 mm, or 1.02 mm/ns, close to the values of .95 ns and 1.05 mm/ns 
given in the Roentdek manual.  A consistency check on these values from actual data can 
made using time sum values.  We can sum the two position signals to get: 
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The value we typically plot in our time sum spectra is therefore: 
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If we take xl to be one-half the length of a ceramic winding rod (one-half of 85 mm for 
the DLD80), and assuming that dlt and drt are neglible, the xdelay value should be 
roughly nsnsmmmm 81)/05.1/(85 = .  Typically the two offsets will sum to a few nsec, 
increasing this value to give the measured time sum (the centroid of the peak in the time 
sum spectrum). 
 
Conversion examples  
 
Here are a few conversion examples from the sorting code I’m familiar with: 
 
Itzik’s group:  Positions are calculated by a Posn function that takes as input a 
conversion factor Conv and the raw lsig and rsig signals in channels, then calculates 
 
Posn = Conv*(1.0*lsig -1.0*rsig)/2.0 
 
It uses a conversion value of Conv = ch2mmx = .51 mm/ch.  This is for a DLD80 
detector.  So, one of the factors of 2 is included in the conversion constant and the other 
is explicit in the Posn calculation.  
 
PAW FORTRAN code used by Lew and Igor’s groups:  Their resort code returns an 
array, typically called el for electrons and rec for recoils.  It is a two dimensional array.  
The second dimension contains the hit number.  The first dimension has value 1 for the 
timing signal, 2 for the R – L signal, and 3 for the D – U signal.  In the analyse.f code, 
these values are converted to position in mm by multiplying by a conversion factor, gx or 
gy, and dividing by 2, as in xr1 = gxr*result(2,1)/2.  Note:  in some older code, this 
explicit factor of 2 was omitted, so that spectra plotting position in mm were incorrect.  
Momenta values were corrected by including another factor of 2 in their calculation.  
Instead of using a factor of 6101× to convert from mm/ns to m/s for the further 
conversion to au, a factor of 5105× was used. 
 
Andre Staudte’s code :  He uses a function called makepos, where, for a DLD anode, the 
position is (tdc(x1) – tdc(x2))/(2.*f), where the tdc values are already in ns, and f is 
around 1. for a DLD80. 



 
University of Colorado COBOLD code :  Inside a C++ function called 
AnalysisProcessEvent, they calculate position as DLD_pos_x = (tdc_ns(x1)-
tdc_ns(x2))*scalefactor, where the scalefactor is .386.  Note the conversion from 
channels to ns has already been made, and the other factor of 2 is incorporated into the 
scalefactor (DLD120 =xv 0.80, so 40.02/ =xv ). 


